fileout.cu
5.13 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#include "fileout.h"
//#include "scalarfield.h"
/*void fileoutStruct::saveMag(fieldslice* U, std::string filename, rts::colormap::colormapType cmap)
{
int Rx = U->R[0];
int Ry = U->R[1];
//allocate space for a scalar field on the GPU
ptype* gpuScalar;
int memsize = sizeof(ptype) * Rx * Ry;
HANDLE_ERROR(cudaMalloc((void**) &gpuScalar, memsize));
HANDLE_ERROR(cudaMemset(gpuScalar, 0, memsize));
U->Mag(gpuScalar);
rts::colormap::gpu2image<ptype>(gpuScalar, filename, Rx, Ry, 0, colorMax, cmap);
HANDLE_ERROR(cudaFree(gpuScalar));
}
void fileoutStruct::saveReal_scalar(fieldslice* U, std::string filename, rts::colormap::colormapType cmap)
{
//returns the real component
scalarslice sf = U->Real();
sf.toImage(filename, false, cmap);
}
void fileoutStruct::saveImag_scalar(fieldslice* U, std::string filename, rts::colormap::colormapType cmap)
{
//returns the imaginary component of a field (assumed scalar)
scalarslice sf = U->Imag();
sf.toImage(filename, false, cmap);
}
void fileoutStruct::saveIntensity(fieldslice* U, std::string filename, rts::colormap::colormapType cmap)
{
//get the intensity of the field
scalarslice sf = U->Intensity();
sf.toImage(filename, true, cmap);
}
void fileoutStruct::saveAngularSpectrum(fieldslice* U, std::string filename, rts::colormap::colormapType cmap)
{
ptype* gpuScalar;
int memsize = sizeof(ptype) * U->R[0] * U->R[1];
HANDLE_ERROR(cudaMalloc((void**) &gpuScalar, memsize));
HANDLE_ERROR(cudaMemset(gpuScalar, 0, memsize));
//convert the field slice to its angular spectrum
U->toAngularSpectrum();
//convert the angular spectrum to a scalar field
U->Mag(gpuScalar);
//save the color image
rts::colormap::gpu2image<ptype>(gpuScalar, filename, U->R[0], U->R[1], 0, colorMax, cmap);
HANDLE_ERROR(cudaFree(gpuScalar));
}*/
void fileoutStruct::saveNearField(nearfieldStruct* nf)
{
if(nearFile == "") return;
if(field == fieldReal)
{
scalarslice S = nf->U.Real();
S.toImage(nearFile, false, colormap);
}
if(field == fieldImag)
{
scalarslice S = nf->U.Imag();
S.toImage(nearFile, false, colormap);
}
if(field == fieldMag)
{
scalarslice S = nf->U.Mag();
S.toImage(nearFile, true, colormap);
}
}
void fileoutStruct::saveFarField(microscopeStruct* scope)
{
if(farFile == "") return;
if(field == fieldReal)
{
scalarslice S = scope->Ud.Real();
S.toImage(farFile, false, colormap);
}
if(field == fieldImag)
{
scalarslice S = scope->Ud.Imag();
S.toImage(farFile, false, colormap);
}
if(field == fieldMag)
{
scalarslice S = scope->Ud.Mag();
S.toImage(farFile, true, colormap);
}
}
void fileoutStruct::saveDetector(microscopeStruct* scope)
{
//intensity
if(intFile != "")
{
scalarslice I = scope->getIntensity();
if(is_binary(intFile))
{
if(wavenumber)
I.toEnvi(intFile, 10000.0f/scope->nf.lambda, append);
else
I.toEnvi(intFile, scope->nf.lambda, append);
}
else
I.toImage(intFile);
}
//absorbance
if(absFile != "")
{
scalarslice I = scope->getAbsorbance();
if(is_binary(absFile))
{
if(wavenumber)
I.toEnvi(absFile, 10000.0f/scope->nf.lambda, append);
else
I.toEnvi(absFile, scope->nf.lambda, append);
}
else
I.toImage(absFile);
}
//transmittance
if(transFile != "")
{
scalarslice I = scope->getTransmittance();
if(is_binary(transFile))
{
if(wavenumber)
I.toEnvi(transFile, 10000.0f/scope->nf.lambda, append);
else
I.toEnvi(transFile, scope->nf.lambda, append);
}
else
I.toImage(transFile);
}
}
bool fileoutStruct::is_binary(std::string filename)
{
//this function guesses if a file name is binary or a standard image
// do this by just testing extensions
//get the extension
size_t i = filename.find_last_of('.');
//if there is no extension, return true
if( i == std::string::npos )
return true;
//otherwise grab the extension
std::string ext = filename.substr(i+1);
if(ext == "bmp" ||
ext == "jpg" ||
ext == "tif" ||
ext == "gif" ||
ext == "png")
return false;
else
return true;
}
void fileoutStruct::Save(microscopeStruct* scope)
{
//save images of the fields in the microscope
//if the user specifies an extended source
if(scope->focalPoints.size() > 0)
{
//simulate the extended source and output the detector image
scope->SimulateExtendedSource();
//saveNearField(&scope->nf);
saveFarField(scope);
//save the detector images
saveDetector(scope);
//simulate scattering for the last point (so that you have a near field image)
scope->SimulateScattering();
saveNearField(&scope->nf);
}
else
{
//run the near-field simulation
scope->SimulateScattering();
//output the near field image
saveNearField(&scope->nf);
//run the far-field simulation
scope->SimulateImaging();
//saveNearField(&scope->nf);
saveFarField(scope);
//save the detector images
saveDetector(scope);
}
}