sphere.cpp
8.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#include "sphere.h"
#include "defaults.h"
#include "rts/math/complex.h"
#include <complex>
#include <stdlib.h>
#include <fstream>
//using namespace rts;
using namespace std;
int cbessjyva(double v,complex<double> z,double &vm,complex<double>*cjv,
complex<double>*cyv,complex<double>*cjvp,complex<double>*cyvp);
int cbessjyva_sph(int v,complex<double> z,double &vm,complex<double>*cjv,
complex<double>*cyv,complex<double>*cjvp,complex<double>*cyvp);
int bessjyv_sph(int v, double z, double &vm, double* cjv,
double* cyv, double* cjvp, double* cyvp);
void sphere::calcCoeff(ptype lambda, bsComplex ri)
{
/* These calculations are done at high-precision on the CPU
since they are only required once for each wavelength.
Input:
lambda = wavelength of the incident field
n = complex refractive index of the sphere
*/
//clear the previous coefficients
A.clear();
B.clear();
//convert to an std complex value
complex<double> nc(ri.real(), ri.imag());
n = ri;
//compute the magnitude of the k vector
double k = 2 * PI / lambda;
complex<double> kna = nc * k * (double)a;
//compute the arguments k*a and k*n*a
complex<double> ka(k * a, 0.0);
//allocate space for the Bessel functions of the first and second kind (and derivatives)
int bytes = sizeof(complex<double>) * (Nl + 1);
complex<double>* cjv_ka = (complex<double>*)malloc(bytes);
complex<double>* cyv_ka = (complex<double>*)malloc(bytes);
complex<double>* cjvp_ka = (complex<double>*)malloc(bytes);
complex<double>* cyvp_ka = (complex<double>*)malloc(bytes);
complex<double>* cjv_kna = (complex<double>*)malloc(bytes);
complex<double>* cyv_kna = (complex<double>*)malloc(bytes);
complex<double>* cjvp_kna = (complex<double>*)malloc(bytes);
complex<double>* cyvp_kna = (complex<double>*)malloc(bytes);
//allocate space for the spherical Hankel functions and derivative
complex<double>* chv_ka = (complex<double>*)malloc(bytes);
complex<double>* chvp_ka = (complex<double>*)malloc(bytes);
//compute the bessel functions using the CPU-based algorithm
double vm;
cbessjyva_sph(Nl, ka, vm, cjv_ka, cyv_ka, cjvp_ka, cyvp_ka);
cbessjyva_sph(Nl, kna, vm, cjv_kna, cyv_kna, cjvp_kna, cyvp_kna);
//compute A for each order
complex<double> i(0, 1);
complex<double> a, b, c, d;
complex<double> An, Bn;
for(int l=0; l<=Nl; l++)
{
//compute the Hankel functions from j and y
chv_ka[l] = cjv_ka[l] + i * cyv_ka[l];
chvp_ka[l] = cjvp_ka[l] + i * cyvp_ka[l];
//Compute A (internal scattering coefficient)
//compute the numerator and denominator for A
a = cjv_ka[l] * chvp_ka[l] - cjvp_ka[l] * chv_ka[l];
b = cjv_kna[l] * chvp_ka[l] - chv_ka[l] * cjvp_kna[l] * nc;
//calculate A and add it to the list
An = (2.0 * l + 1.0) * pow(i, l) * (a / b);
A.push_back(bsComplex(An.real(), An.imag()));
//Compute B (external scattering coefficient)
c = cjv_ka[l] * cjvp_kna[l] * nc - cjv_kna[l] * cjvp_ka[l];
d = cjv_kna[l] * chvp_ka[l] - chv_ka[l] * cjvp_kna[l] * nc;
//calculate B and add it to the list
Bn = (2.0 * l + 1.0) * pow(i, l) * (c / d);
B.push_back(bsComplex(Bn.real(), Bn.imag()));
}
}
void sphere::calcBesselLut(bsComplex* j, ptype k, bsComplex n, int aR)
{
/*Compute the look-up-table for spherical bessel functions used inside of the sphere
j = (Nl + 1) x aR array of values
aR = resolution of j
*/
//allocate space for the Bessel functions of the first and second kind (and derivatives -- which will be ignored)
int bytes = sizeof(complex<double>) * (Nl + 1);
complex<double>* cjv_knr = (complex<double>*)malloc(bytes);
complex<double>* cyv_knr = (complex<double>*)malloc(bytes);
complex<double>* cjvp_knr = (complex<double>*)malloc(bytes);
complex<double>* cyvp_knr = (complex<double>*)malloc(bytes);
//compute the bessel functions using the CPU-based algorithm
double vm;
//for each sample along r
ptype dr = a / (aR - 1);
ptype r;
for(int ir = 0; ir < aR; ir++)
{
r = ir * dr;
complex<double> knr( (k*n*r).real(), (k*n*r).imag() );
cbessjyva_sph(Nl, knr, vm, cjv_knr, cyv_knr, cjvp_knr, cyvp_knr);
//copy the double data to the bsComplex array
for(int l=0; l<=Nl; l++)
{
//deal with the NaN case at the origin
if(ir == 0)
{
if(l == 0)
j[ir * (Nl+1)] = 1;
else
j[ir * (Nl+1) + l] = 0;
}
else
j[ir * (Nl+1) + l] = bsComplex(cjv_knr[l].real(), cjv_knr[l].imag());
}
}
/*ofstream outfile("besselout.txt");
for(int ir = 0; ir < aR; ir++)
{
for(int l = 0; l<Nl+1; l++)
{
outfile<<j[ir * (Nl+1) + l].real()<<" ";
}
outfile<<endl;
}
outfile.close();*/
}
void sphere::calcHankelLut(bsComplex* h, ptype k, int rR)
{
/*Compute the look-up-table for spherical bessel functions used inside of the sphere
h_out = (Nl + 1) x aR array of values
rmin = minimum value of r
d_max = maximum value of r
rR = resolution of h_out
*/
//allocate space for the Bessel functions of the first and second kind (and derivatives -- which will be ignored)
int bytes = sizeof(double) * (Nl + 1);
double* cjv_kr = (double*)malloc(bytes);
double* cyv_kr = (double*)malloc(bytes);
double* cjvp_kr = (double*)malloc(bytes);
double* cyvp_kr = (double*)malloc(bytes);
//compute the bessel functions using the CPU-based algorithm
double vm;
//for each sample along r
ptype dr = (d_max - max(a, d_min)) / (rR - 1);
ptype r;
for(int ir = 0; ir < rR; ir++)
{
r = ir * dr + max(a, d_min);
double kr = k*r;
bessjyv_sph(Nl, kr, vm, cjv_kr, cyv_kr, cjvp_kr, cyvp_kr);
//copy the double data to the bsComplex array
for(int l=0; l<=Nl; l++)
{
//h[ir * (Nl+1) + l] = bsComplex(cjv_kr[l].real(), cyv_kr[l].real());
h[ir * (Nl+1) + l] = bsComplex(cjv_kr[l], cyv_kr[l]);
}
}
/*ofstream outfile("hankelout.txt");
for(int ir = 0; ir < rR; ir++)
{
outfile<<ir*dr + max(a, d_min)<<" ";
for(int l = 0; l<=0; l++)
{
outfile<<h[ir * (Nl+1) + l].real()<<" "<<h[ir * (Nl+1) + l].imag()<<" ";
}
outfile<<endl;
}
outfile.close();*/
}
void sphere::calcLut(bsComplex* j, bsComplex* h, ptype lambda, bsComplex n, int aR, int rR)
{
/*Compute the look-up-tables for spherical bessel functions used both inside and outside of the sphere.
j = (Nl + 1) x aR array of values
j = (Nl + 1) x rR array of values
d_max = maximum distance for the LUT
aR = resolution of j_in
rR = resolution of j_out
*/
//compute the magnitude of the k vector
double k = 2 * PI / lambda;
calcBesselLut(j, k, n, aR);
calcHankelLut(h, k, rR);
}
void sphere::calcUp(ptype lambda, bsComplex n, rts::quad<ptype, 3> nfPlane, unsigned int R)
{
//calculate the parameters of the lookup table
//first find the distance to the closest and furthest points on the nearfield plane
d_min = nfPlane.dist(p);
d_max = nfPlane.dist_max(p);
//compute the radius of the cross-section of the sphere with the plane
ptype a_inter = 0;
if(d_min < a)
a_inter = sqrt(a - d_min);
//calculate the resolution of the Usp and Uip lookup tables
int aR = 1 + 2 * R * a_inter / (nfPlane(0, 0) - nfPlane(1, 1)).len();
int dR = 2 * R;
int thetaR = DEFAULT_SPHERE_THETA_R;
//allocate space for the bessel function LUTs
bsComplex* j = (bsComplex*)malloc(sizeof(bsComplex) * (Nl + 1) * aR);
bsComplex* h = (bsComplex*)malloc(sizeof(bsComplex) * (Nl + 1) * dR);
calcLut(j, h, lambda, n, aR, dR);
//allocate space for the Usp lookup texture
Usp.R[0] = dR;
Usp.R[1] = thetaR;
Usp.init_gpu();
//allocate space for the Uip lookup texture
Uip.R[0] = aR;
Uip.R[1] = thetaR;
Uip.init_gpu();
scalarUsp(h, dR, thetaR);
scalarUip(j, aR, thetaR);
scalarslice UspMag = Usp.Mag();
UspMag.toImage("Usp.bmp", true);
scalarslice UipMag = Uip.Mag();
UipMag.toImage("Uip.bmp", true);
//free memory
free(j);
free(h);
}
sphere& sphere::operator=(const sphere &rhs)
{
p = rhs.p;
a = rhs.a;
iMaterial = rhs.iMaterial;
Nl = rhs.Nl;
n = rhs.n;
B = rhs.B;
A = rhs.A;
return *this;
}
sphere::sphere(const sphere &rhs)
{
p = rhs.p;
a = rhs.a;
iMaterial = rhs.iMaterial;
Nl = rhs.Nl;
n = rhs.n;
B = rhs.B;
A = rhs.A;
}