fileout.cu
3.34 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#include "fileout.h"
void fileoutStruct::saveNearField(nearfieldStruct* nf)
{
if(nearFile == "") return;
if(field == fieldReal)
{
scalarslice S = nf->U.Real();
S.toImage(nearFile, false, colormap);
}
if(field == fieldImag)
{
scalarslice S = nf->U.Imag();
S.toImage(nearFile, false, colormap);
}
if(field == fieldMag)
{
scalarslice S = nf->U.Mag();
S.toImage(nearFile, true, colormap);
}
}
void fileoutStruct::saveFarField(microscopeStruct* scope)
{
if(farFile == "") return;
if(field == fieldReal)
{
scalarslice S = scope->Ud.Real();
S.toImage(farFile, false, colormap);
}
if(field == fieldImag)
{
scalarslice S = scope->Ud.Imag();
S.toImage(farFile, false, colormap);
}
if(field == fieldMag)
{
scalarslice S = scope->Ud.Mag();
S.toImage(farFile, true, colormap);
}
}
void fileoutStruct::saveDetector(microscopeStruct* scope)
{
//intensity
if(intFile != "")
{
scalarslice I = scope->getIntensity();
if(is_binary(intFile))
{
if(wavenumber)
I.toEnvi(intFile, 10000.0f/scope->nf.lambda, append);
else
I.toEnvi(intFile, scope->nf.lambda, append);
}
else
I.toImage(intFile);
}
//absorbance
if(absFile != "")
{
scalarslice I = scope->getAbsorbance();
if(is_binary(absFile))
{
if(wavenumber)
I.toEnvi(absFile, 10000.0f/scope->nf.lambda, append);
else
I.toEnvi(absFile, scope->nf.lambda, append);
}
else
I.toImage(absFile);
}
//transmittance
if(transFile != "")
{
scalarslice I = scope->getTransmittance();
if(is_binary(transFile))
{
if(wavenumber)
I.toEnvi(transFile, 10000.0f/scope->nf.lambda, append);
else
I.toEnvi(transFile, scope->nf.lambda, append);
}
else
I.toImage(transFile);
}
}
bool fileoutStruct::is_binary(std::string filename)
{
//this function guesses if a file name is binary or a standard image
// do this by just testing extensions
//get the extension
size_t i = filename.find_last_of('.');
//if there is no extension, return true
if( i == std::string::npos )
return true;
//otherwise grab the extension
std::string ext = filename.substr(i+1);
if(ext == "bmp" ||
ext == "jpg" ||
ext == "tif" ||
ext == "gif" ||
ext == "png")
return false;
else
return true;
}
void fileoutStruct::Save(microscopeStruct* scope)
{
//save images of the fields in the microscope
//if the user specifies an extended source
if(scope->focalPoints.size() > 0)
{
//simulate the extended source and output the detector image
scope->SimulateExtendedSource();
//saveNearField(&scope->nf);
saveFarField(scope);
//save the detector images
saveDetector(scope);
//simulate scattering for the last point (so that you have a near field image)
scope->SimulateScattering();
saveNearField(&scope->nf);
}
else
{
//run the near-field simulation
scope->SimulateScattering();
//output the near field image
saveNearField(&scope->nf);
//run the far-field simulation
scope->SimulateImaging();
//saveNearField(&scope->nf);
saveFarField(scope);
//save the detector images
saveDetector(scope);
}
}