microscope.cu
7.32 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#include "microscope.h"
#include "rts/cuda/error.h"
#include "rts/tools/progressbar.h"
#include "rts/cuda/timer.h"
#include "dataTypes.h"
#include "rts/visualization/colormap.h"
#include <QImage>
__global__ void bandpass(bsComplex* U, int uR, int vR, ptype du, ptype dv, ptype NAin, ptype NAout, ptype lambda)
{
//get the current coordinate in the plane slice
int iu = blockIdx.x * blockDim.x + threadIdx.x;
int iv = blockIdx.y * blockDim.y + threadIdx.y;
//make sure that the thread indices are in-bounds
if(iu >= uR || iv >= vR) return;
//compute the index (easier access to the scalar field array)
int i = iv*uR + iu;
ptype u, v;
if(iu <= uR / 2)
u = (ptype)iu * du;
else
u = -(ptype)(uR - 1 - iu) * du;
if(iv <= vR / 2)
v = (ptype)iv * dv;
else
v = -(ptype)(vR - 1 - iv) * dv;
ptype fmag = sqrt(u*u + v*v);
if(fmag < NAin / lambda || fmag > NAout / lambda)
U[i] = 0;
//U[i] = U[i];
}
microscopeStruct::microscopeStruct()
{
scalarSim = true;
D = NULL;
Di = NULL;
}
void microscopeStruct::init()
{
nf.scalarSim = scalarSim;
//Ud.scalarField = scalarSim;
//Ufd.scalarField = scalarSim;
//Ud.init_gpu();
//Ufd.init_gpu();
//initialize the near field
nf.init();
//allocate space for the detector
D = new scalarslice(Ud.R[0] / ss, Ud.R[1] / ss);
Di = new scalarslice(Ud.R[0] / ss, Ud.R[1] / ss);
//clear the detector
clearDetector();
}
void microscopeStruct::destroy()
{
delete D;
D = NULL;
delete Di;
Di = NULL;
Ud.kill_gpu();
Ufd.kill_gpu();
//destroy the near field
nf.destroy();
}
void microscopeStruct::applyBandpass()
{
//This function applies the objective bandpass to the near field
//The near field structure stores the results, in order to save memory
//first convert the near field to an angular spectrum (FFT)
nf.U.toAngularSpectrum();
//create one thread for each pixel of the field slice
dim3 dimBlock(SQRT_BLOCK, SQRT_BLOCK);
dim3 dimGrid((nf.U.R[0] + SQRT_BLOCK -1)/SQRT_BLOCK, (nf.U.R[1] + SQRT_BLOCK - 1)/SQRT_BLOCK);
//compute the step size in the frequency domain
ptype du = 1.0 / (nf.pos.X.len());
ptype dv = 1.0 / (nf.pos.Y.len());
//apply the objective band-pass filter
bandpass<<<dimGrid, dimBlock>>>(nf.U.x_hat, nf.U.R[0], nf.U.R[1], du, dv, objective[0], objective[1], nf.lambda);
//convert the near field image back to the spatial domain
// (this is the field at the detector)
nf.U.fromAngularSpectrum();
}
void microscopeStruct::getFarField()
{
//Compute the Far Field image of the focal plane
//clear the memory from previous detector fields
//Ud.kill_gpu();
//Ufd.kill_gpu();
//first crop the filtered near-field image of the source and scattered fields
Ud = nf.U.crop(padding * Ud.R[0], padding * Ud.R[1], Ud.R[0], Ud.R[1]);
Ufd = nf.Uf.crop(padding * Ufd.R[0], padding * Ufd.R[1], Ufd.R[0], Ufd.R[1]);
}
void microscopeStruct::integrateDetector()
{
Ud.IntegrateAndResample(D, ss);
Ufd.IntegrateAndResample(Di, ss);
}
void microscopeStruct::clearDetector()
{
//zero-out the detector
D->clear();
Di->clear();
}
//flag for a vector simulation
void microscopeStruct::setPos(bsPoint pMin, bsPoint pMax, bsVector normal)
{
pos = rts::quad<ptype, 3>(pMin, pMax, normal);
}
void microscopeStruct::setRes(int x_res, int y_res, int pad, int supersampling)
{
padding = pad;
ss = supersampling;
Ufd.R[0] = Ud.R[0] = x_res * ss;
Ufd.R[1] = Ud.R[1] = y_res * ss;
}
void microscopeStruct::setNearfield()
{
//sets the values for the near field in order to create the specified detector image
//compute the size of the near-field slice necessary to create the detector image
nf.pos = pos * (padding * 2 + 1);
//compute the resolution of the near-field slice necessary to create the detector image
nf.setRes(Ud.R[0] * (padding * 2 + 1), Ud.R[1] * (padding * 2 + 1));
}
__global__ void calc_absorbance(ptype* A, ptype* D, ptype* Di, int N)
{
//compute the index for this thread
int i = blockIdx.x * blockDim.x + threadIdx.x;
if(i >= N) return;
A[i] = -log10(D[i] / Di[i]);
}
scalarslice microscopeStruct::getAbsorbance()
{
//compute the magnitude of the field at each rtsPoint in the slice
//create a scalar slice at the same resolution as the field
scalarslice* A = new scalarslice(D->R[0], D->R[1]);
//compute the total number of values in the slice
unsigned int N = D->R[0] * D->R[1];
int gridDim = (N+BLOCK-1)/BLOCK;
calc_absorbance<<<gridDim, BLOCK>>>(A->S, D->S, Di->S, N);
return *A;
}
__global__ void calc_transmittance(ptype* A, ptype* D, ptype* Di, int N)
{
//compute the index for this thread
int i = blockIdx.x * blockDim.x + threadIdx.x;
if(i >= N) return;
A[i] = D[i] / Di[i];
}
scalarslice microscopeStruct::getTransmittance()
{
//compute the magnitude of the field at each rtsPoint in the slice
//create a scalar slice at the same resolution as the field
scalarslice* T = new scalarslice(D->R[0], D->R[1]);
//compute the total number of values in the slice
unsigned int N = D->R[0] * D->R[1];
int gridDim = (N+BLOCK-1)/BLOCK;
calc_transmittance<<<gridDim, BLOCK>>>(T->S, D->S, Di->S, N);
return *T;
}
scalarslice microscopeStruct::getIntensity()
{
//create a scalar slice at the same resolution as the field
scalarslice* I = new scalarslice(D->R[0], D->R[1]);
HANDLE_ERROR(cudaMemcpy(I->S, D->S, sizeof(ptype) * D->R[0] * D->R[1], cudaMemcpyDeviceToDevice));
return *I;
}
void microscopeStruct::SimulateScattering()
{
nf.Simulate();
}
void microscopeStruct::SimulateImaging()
{
applyBandpass();
getFarField();
integrateDetector();
}
void microscopeStruct::Simulate()
{
SimulateScattering();
SimulateImaging();
}
void microscopeStruct::SimulateExtendedSource()
{
clearDetector();
//for each source in the source list
int npts = focalPoints.size();
float t=0;
for(int i = 0; i<npts; i++)
{
nf.focus = focalPoints[i].f;
nf.A = focalPoints[i].A;
gpuStartTimer();
Simulate();
t += gpuStopTimer();
rtsProgressBar((double)(i+1)/(double)npts * 100);
//unsigned char c;
//cin>>c;
}
if(verbose)
{
cout<<endl;
cout<<"Time per source: "<<t/npts<<"ms"<<endl;
}
}
void microscopeStruct::LoadExtendedSource(std::string filename)
{
//this function loads an image of an extended source and creates a list of corresponding point sources
QImage sourceImage(filename.c_str());
//get the resolution of the image (the boundary is scaled to match the detector)
int Rx = sourceImage.width();
int Ry = sourceImage.height();
//for each pixel
int x, y;
float u, v;
for(x=0; x<Rx; x++)
for(y=0; y<Ry; y++)
{
//create a new point source
sourcePoint p;
//compute the coordinate of the focal point
u = (ptype)x / (ptype)Rx;
v = (ptype)y / (ptype)Ry;
p.f = pos(u, v);
//get the amplitude of the focal point
QRgb rgb = sourceImage.pixel(x, y);
//float A = qGray(rgb);
if(qGray(rgb) != 0)
{
p.A = (ptype) qGray(rgb) / 255;
//insert the point source into the list
focalPoints.push_back(p);
}
}
}
std::string microscopeStruct::toStr()
{
stringstream ss;
ss<<nf.toStr();
ss<<"----------Optics--------------"<<endl<<endl;
ss<<"Objective NA: "<<objective[0]<<" to "<<objective[1]<<endl;
return ss.str();
}