options.h 12.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
//AnyOption for command-line processing
//#include "anyoption.h"

#include "rts/optics/material.h"

#include "nearfield.h"
#include "microscope.h"
#include "colormap.h"
#include "fileout.h"
//extern nearfieldStruct* NF;
extern microscopeStruct* SCOPE;
extern fileoutStruct gFileOut;

//default values
#include "defaults.h"

#include <string>
#include <sstream>
#include <fstream>
#include <limits>
using namespace std;

#include <boost/program_options.hpp>
namespace po = boost::program_options;

static void loadSpheres(string sphereList)
{
    /*This function loads a list of sphere given in the string sphereList
        The format is:
            x y z a m
        where
            x, y, z = sphere position (required)
            a = sphere radius (required)
            m = material ID (optional) */

    std::stringstream ss(sphereList);

    while(!ss.eof())
    {
        //create a new sphere
        sphere newS;

        //get the sphere data
        ss>>newS.p[0];
        ss>>newS.p[1];
        ss>>newS.p[2];
        ss>>newS.a;

        if(ss.peek() != '\n')
            ss>>newS.iMaterial;

        //add the new sphere to the sphere vector
        SCOPE->nf.sVector.push_back(newS);

        //ignore the rest of the line
        ss.ignore(std::numeric_limits<std::streamsize>::max(), '\n');

        //check out the next element (this should set the EOF error flag)
        ss.peek();
    }



}

static void loadSpheres(po::variables_map vm)
{
    //if a files are specified
    if(vm.count("sphere-file"))
    {
        cout<<"Sphere files detected."<<endl;
        vector<string> filenames = vm["sphere-file"].as< vector<string> >();
        //load each file
        for(int iS=0; iS<filenames.size(); iS++)
        {
            //load the file into a string
            std::ifstream ifs(filenames[iS].c_str());

            if(!ifs)
            {
                cout<<"Error loading sphere file."<<endl;
                exit(1);
            }

            std::string instr((std::istreambuf_iterator<char>(ifs)), std::istreambuf_iterator<char>());

            //load the list of spheres from a string
            loadSpheres(instr);
        }
    }

    //load the sphere from the command line
    if(vm.count("sx") || vm.count("sy") || vm.count("sz") || vm.count("s"))
    {
        //create a new sphere
        sphere newS;

		//set defaults
		if(vm.count("sx"))
            newS.p[0] = vm["sx"].as<ptype>();
        else
            newS.p[0] = DEFAULT_SPHERE_X;


		if(vm.count("sy"))
            newS.p[1] = vm["sy"].as<ptype>();
        else
            newS.p[1] = DEFAULT_SPHERE_Y;

		if(vm.count("sz"))
            newS.p[2] = vm["sz"].as<ptype>();
        else
            newS.p[2] = DEFAULT_SPHERE_Z;

		if(vm.count("radius"))
            newS.a = vm["radius"].as<ptype>();
        else
            newS.a = DEFAULT_SPHERE_A;

        //add the sphere to the sphere vector
        SCOPE->nf.sVector.push_back(newS);

    }
}

static void loadMaterials(po::variables_map vm)
{
	//if materials are specified at the command line
	if(vm.count("materials"))
	{
		vector<ptype> matVec = vm["materials"].as< vector<ptype> >();
		if(matVec.size() %2 != 0)
		{
			cout<<"BIMSim Error: materials must be specified in n, k pairs"<<endl;
			exit(1);
		}


		for(int i=0; i<matVec.size(); i+=2)
		{
			rts::material<ptype> newM(vm["lambda"].as<ptype>(), matVec[i], matVec[i+1]);
			SCOPE->nf.mVector.push_back(newM);
		}
	}
	else
	{
		//add the command line material as the default (material 0)
		rts::material<ptype> newM(vm["lambda"].as<ptype>(), vm["n"].as<ptype>(), vm["k"].as<ptype>());
		SCOPE->nf.mVector.push_back(newM);
	}

	//if file names are specified, load the materials
	if(vm.count("material-file"))
	{
        vector<string> filenames = vm["material-file"].as< vector<string> >();
        for(int i=0; i<filenames.size(); i++)
        {
            //load the file into a string
            std::ifstream ifs(filenames[i].c_str());

            std::string instr((std::istreambuf_iterator<char>(ifs)), std::istreambuf_iterator<char>());

            //load the list of spheres from a string
            rts::material<ptype> newM;
            newM.fromStr(instr, "");
            SCOPE->nf.mVector.push_back(newM);
        }
	}

}

static void loadNearfieldParams(po::variables_map vm)
{
	//test to see if we are simulating a plane wave
	bool planeWave = DEFAULT_PLANEWAVE;
	if(vm.count("plane-wave"))
		planeWave = !planeWave;
	SCOPE->nf.planeWave = planeWave;

	//get the wavelength
    SCOPE->nf.lambda = vm["lambda"].as<ptype>();

	//get the incident field amplitude
	SCOPE->nf.A = vm["amplitude"].as<ptype>();

	//get the condenser parameters
    SCOPE->nf.condenser[0] = vm["condenser-min"].as<ptype>();
    SCOPE->nf.condenser[1] = vm["condenser-max"].as<ptype>();


	//get the focal rtsPoint position
    SCOPE->nf.focus[0] = vm["fx"].as<ptype>();
    SCOPE->nf.focus[1] = vm["fy"].as<ptype>();
    SCOPE->nf.focus[2] = vm["fz"].as<ptype>();

	//get the incident light direction (k-vector)
	bsVector spherical;
	spherical[0] = 1.0;
    spherical[1] = vm["theta"].as<ptype>();
    spherical[2] = vm["phi"].as<ptype>();
	SCOPE->nf.k = spherical.sph2cart();


    //incident field order
    SCOPE->nf.m = vm["field-order"].as<int>();

    //number of Monte-Carlo samples
    SCOPE->nf.nWaves = vm["samples"].as<int>();



}

static void loadSliceParams(po::variables_map vm)
{
    //parameters for the sample plane


	//set the default values for the slice position and orientation
	bsPoint pMin(vm["plane-min-x"].as<ptype>(), vm["plane-min-y"].as<ptype>(), vm["plane-min-z"].as<ptype>());
	bsPoint pMax(vm["plane-max-x"].as<ptype>(), vm["plane-max-y"].as<ptype>(), vm["plane-max-z"].as<ptype>());
	bsVector normal(vm["plane-norm-x"].as<ptype>(), vm["plane-norm-y"].as<ptype>(), vm["plane-norm-z"].as<ptype>());
	SCOPE->setPos(pMin, pMax, normal);

	//resolution
	SCOPE->setRes(vm["resolution"].as<unsigned int>(),
				  vm["resolution"].as<unsigned int>(),
				  vm["padding"].as<unsigned int>(),
				  vm["supersample"].as<unsigned int>());





	SCOPE->setNearfield();



}

static void loadMicroscopeParams(po::variables_map vm)
{
    //objective
    SCOPE->objective[0] = vm["objective-min"].as<ptype>();
    SCOPE->objective[1] = vm["objective-max"].as<ptype>();





}

static void loadOutputParams(po::variables_map vm)
{
    //append simulation results to previous binary files
    gFileOut.append = DEFAULT_APPEND;
    if(vm.count("append"))
        gFileOut.append = true;

	//image parameters
	//component of the field to be saved
	std::string fieldStr;
    fieldStr = vm["output-type"].as<string>();

    if(fieldStr == "magnitude")
        gFileOut.field = fileoutStruct::fieldMag;
    else if(fieldStr == "intensity")
        gFileOut.field = fileoutStruct::fieldIntensity;
    else if(fieldStr == "polarization")
        gFileOut.field = fileoutStruct::fieldPolar;
    else if(fieldStr == "imaginary")
        gFileOut.field = fileoutStruct::fieldImag;
    else if(fieldStr == "real")
        gFileOut.field = fileoutStruct::fieldReal;
    else if(fieldStr == "angular-spectrum")
        gFileOut.field = fileoutStruct::fieldAngularSpectrum;


	//image file names
	gFileOut.intFile = vm["intensity"].as<string>();
	gFileOut.absFile = vm["absorbance"].as<string>();
	gFileOut.transFile = vm["transmittance"].as<string>();
	gFileOut.nearFile = vm["near-field"].as<string>();
	gFileOut.farFile = vm["far-field"].as<string>();

	//colormap
	std::string cmapStr;
    cmapStr = vm["colormap"].as<string>();
    if(cmapStr == "brewer")
        gFileOut.colormap = rts::colormap::cmBrewer;
    else if(cmapStr == "gray")
        gFileOut.colormap = rts::colormap::cmGrayscale;
    else
        cout<<"color-map value not recognized (using default): "<<cmapStr<<endl;
}

static void OutputOptions()
{
	cout<<SCOPE->nf.toStr();

}

static void SetOptions(po::options_description &desc)
{
	desc.add_options()
		("help,h", "prints this help")
		("plane-wave,P", "simulates an incident plane wave")
		("intensity,I", po::value<string>()->default_value(DEFAULT_INTENSITY_FILE), "output measured intensity (filename)")
		("absorbance,A", po::value<string>()->default_value(DEFAULT_ABSORBANCE_FILE), "output measured absorbance (filename)")
		("transmittance,T", po::value<string>()->default_value(DEFAULT_TRANSMITTANCE_FILE), "output measured transmittance (filename)")
		("far-field,F", po::value<string>()->default_value(DEFAULT_FAR_FILE), "output far-field at detector (filename)")
		("near-field,N", po::value<string>()->default_value(DEFAULT_NEAR_FILE), "output field at focal plane (filename)")
		("extended-source,X", po::value<string>()->default_value(DEFAULT_EXTENDED_SOURCE), "image of source at focus (filename)")
		//("sx,x", po::value<ptype>()->default_value(DEFAULT_SPHERE_X), "sphere coordinates")
		//("sy,y", po::value<ptype>()->default_value(DEFAULT_SPHERE_Y))
		//("sz,z", po::value<ptype>()->default_value(DEFAULT_SPHERE_Z))
		("sx,x", po::value<ptype>(), "sphere coordinates")
		("sy,y", po::value<ptype>())
		("sz,z", po::value<ptype>())
		("radius,r", po::value<ptype>()->default_value(DEFAULT_SPHERE_A), "sphere radius")
		("samples,s", po::value<int>()->default_value(DEFAULT_SAMPLES), "Monte-Carlo samples used to compute Us")
		("sphere-file,S", po::value< vector<string> >()->multitoken(), "sphere file:\n [x y z radius material]")
		("amplitude,a", po::value<ptype>()->default_value(DEFAULT_AMPLITUDE), "incident field amplitude")
		("n,n", po::value<ptype>()->default_value(DEFAULT_N, "1.4"), "sphere phase speed")
		("k,k", po::value<ptype>()->default_value(DEFAULT_K), "sphere absorption coefficient")
		("material-file,M", po::value< vector<string> >()->multitoken(), "material file:\n [lambda n k]")
		("materials", po::value< vector<ptype> >()->multitoken(), "materials specified using n, k pairs:\n ex. --materials n1 k1 n2 k2\n (if used --n and --k are ignored)")
		("lambda,l", po::value<ptype>()->default_value(DEFAULT_LAMBDA), "incident wavelength")
		("theta,t", po::value<ptype>()->default_value(DEFAULT_K_THETA), "light direction (polar coords)")
		("phi,p", po::value<ptype>()->default_value(DEFAULT_K_PHI))
		("fx", po::value<ptype>()->default_value(DEFAULT_FOCUS_X), "incident focal point")
		("fy", po::value<ptype>()->default_value(DEFAULT_FOCUS_Y))
		("fz", po::value<ptype>()->default_value(DEFAULT_FOCUS_Z))
		("condenser-max,C", po::value<ptype>()->default_value(DEFAULT_CONDENSER_MAX), "condenser numerical aperature")
		("condenser-min,c", po::value<ptype>()->default_value(DEFAULT_CONDENSER_MIN), "condenser obscuration NA")
		("objective-max,O", po::value<ptype>()->default_value(DEFAULT_OBJECTIVE_MAX), "objective numerical aperature")
		("objective-min,o", po::value<ptype>()->default_value(DEFAULT_OBJECTIVE_MIN), "objective obscuration NA")
		("field-order", po::value<int>()->default_value(DEFAULT_FIELD_ORDER), "order of the incident field")
		("output-type,f", po::value<string>()->default_value(DEFAULT_FIELD_TYPE), "output field value:\n magnitude, polarization, real, imaginary, angular-spectrum")
		("resolution,R", po::value<unsigned int>()->default_value(DEFAULT_SLICE_RES), "resolution of the detector")
		("padding,d", po::value<unsigned int>()->default_value(DEFAULT_PADDING), "FFT padding for the objective bandpass")
		("supersample", po::value<unsigned int>()->default_value(DEFAULT_SUPERSAMPLE), "super-sampling rate for the detector field")
		("colormap", po::value<string>()->default_value(DEFAULT_COLORMAP), "colormap: gray, brewer")
		("append", "append result to an existing file\n (binary files only)")
		("plane-min-x,u", po::value<ptype>()->default_value(DEFAULT_SLICE_MIN_X), "lower-left corner of the field slice")
		("plane-min-y,v", po::value<ptype>()->default_value(DEFAULT_SLICE_MIN_Y))
		("plane-min-z,w", po::value<ptype>()->default_value(DEFAULT_SLICE_MIN_Z))
		("plane-max-x,U", po::value<ptype>()->default_value(DEFAULT_SLICE_MAX_X), "upper-right corner of the field slice")
		("plane-max-y,V", po::value<ptype>()->default_value(DEFAULT_SLICE_MAX_Y))
		("plane-max-z,W", po::value<ptype>()->default_value(DEFAULT_SLICE_MAX_Z))
		("plane-norm-x", po::value<ptype>()->default_value(DEFAULT_SLICE_NORM_X), "field slice normal")
		("plane-norm-y", po::value<ptype>()->default_value(DEFAULT_SLICE_NORM_Y))
		("plane-norm-z", po::value<ptype>()->default_value(DEFAULT_SLICE_NORM_Z));
}

static void LoadParameters(int argc, char *argv[])
{
	//create an option description
	po::options_description desc("Allowed options");

	//fill it with options
	SetOptions(desc);

    po::variables_map vm;
	po::store(po::parse_command_line(argc, argv, desc), vm);
	po::notify(vm);

	//display help and exit
	if(vm.count("help"))
	{
		cout<<desc<<endl;
		exit(1);
	}

	//load spheres
	loadSpheres(vm);

	//load materials
	loadMaterials(vm);

	loadNearfieldParams(vm);

	loadOutputParams(vm);

	loadMicroscopeParams(vm);

	loadSliceParams(vm);

    //if an extended source will be used
    if(vm["extended-source"].as<string>() != "")
    {
        //load the point sources
        string filename = vm["extended-source"].as<string>();
        SCOPE->LoadExtendedSource(filename);

    }





}