Commit 5de3a9c2be3a6d1931e2d2040de0245261ce4dc2
CHECKPOINT: before the swap of globj for glnetwork in the use of segmentation.
Showing
24 changed files
with
1371 additions
and
53 deletions
Show diff stats
stim/cuda/arraymath.cuh
... | ... | @@ -3,6 +3,11 @@ |
3 | 3 | |
4 | 4 | #include <stim/cuda/arraymath/array_add.cuh> |
5 | 5 | #include <stim/cuda/arraymath/array_multiply.cuh> |
6 | +#include <stim/cuda/arraymath/array_multiply2.cuh> | |
7 | +#include <stim/cuda/arraymath/array_divide.cuh> | |
8 | +#include <stim/cuda/arraymath/array_cos.cuh> | |
9 | +#include <stim/cuda/arraymath/array_sin.cuh> | |
10 | +#include <stim/cuda/arraymath/array_atan.cuh> | |
6 | 11 | #include <stim/cuda/arraymath/array_abs.cuh> |
7 | 12 | #include <stim/cuda/arraymath/array_cart2polar.cuh> |
8 | 13 | ... | ... |
stim/cuda/arraymath/array_add.cuh
... | ... | @@ -3,6 +3,7 @@ |
3 | 3 | |
4 | 4 | #include <iostream> |
5 | 5 | #include <cuda.h> |
6 | +//#include <cmath> | |
6 | 7 | #include <stim/cuda/cudatools.h> |
7 | 8 | |
8 | 9 | namespace stim{ |
... | ... | @@ -27,7 +28,7 @@ namespace stim{ |
27 | 28 | int threads = stim::maxThreadsPerBlock(); |
28 | 29 | |
29 | 30 | //calculate the number of blocks |
30 | - int blocks = N / threads + (N%threads == 0 ? 0:1); | |
31 | + int blocks = N / threads + 1; | |
31 | 32 | |
32 | 33 | //call the kernel to do the multiplication |
33 | 34 | cuda_add <<< blocks, threads >>>(ptr1, ptr2, sum, N); | ... | ... |
1 | +#ifndef STIM_CUDA_ARRAY_ATAN_H | |
2 | +#define STIM_CUDA_ARRAY_ATAN_H | |
3 | + | |
4 | +#include <iostream> | |
5 | +#include <cuda.h> | |
6 | +#include <cmath> | |
7 | +#include <stim/cuda/cudatools.h> | |
8 | + | |
9 | +namespace stim{ | |
10 | + namespace cuda{ | |
11 | + | |
12 | + template<typename T> | |
13 | + __global__ void cuda_atan(T* ptr1, T* out, unsigned int N){ | |
14 | + | |
15 | + //calculate the 1D index for this thread | |
16 | + int idx = blockIdx.x * blockDim.x + threadIdx.x; | |
17 | + | |
18 | + if(idx < N){ | |
19 | + out[idx] = atan(ptr1[idx]); | |
20 | + } | |
21 | + | |
22 | + } | |
23 | + | |
24 | + template<typename T> | |
25 | + void gpu_atan(T* ptr1, T* out, unsigned int N){ | |
26 | + | |
27 | + //get the maximum number of threads per block for the CUDA device | |
28 | + int threads = stim::maxThreadsPerBlock(); | |
29 | + | |
30 | + //calculate the number of blocks | |
31 | + int blocks = N / threads + 1; | |
32 | + | |
33 | + //call the kernel to do the multiplication | |
34 | + cuda_atan <<< blocks, threads >>>(ptr1, out, N); | |
35 | + | |
36 | + } | |
37 | + | |
38 | + template<typename T> | |
39 | + void cpu_atan(T* ptr1, T* cpu_out, unsigned int N){ | |
40 | + | |
41 | + //allocate memory on the GPU for the array | |
42 | + T* gpu_ptr1; | |
43 | + T* gpu_out; | |
44 | + HANDLE_ERROR( cudaMalloc( &gpu_ptr1, N * sizeof(T) ) ); | |
45 | + HANDLE_ERROR( cudaMalloc( &gpu_out, N * sizeof(T) ) ); | |
46 | + | |
47 | + //copy the array to the GPU | |
48 | + HANDLE_ERROR( cudaMemcpy( gpu_ptr1, ptr1, N * sizeof(T), cudaMemcpyHostToDevice) ); | |
49 | + | |
50 | + //call the GPU version of this function | |
51 | + gpu_atan<T>(gpu_ptr1 ,gpu_out, N); | |
52 | + | |
53 | + //copy the array back to the CPU | |
54 | + HANDLE_ERROR( cudaMemcpy( cpu_out, gpu_out, N * sizeof(T), cudaMemcpyDeviceToHost) ); | |
55 | + | |
56 | + //free allocated memory | |
57 | + cudaFree(gpu_ptr1); | |
58 | + cudaFree(gpu_out); | |
59 | + | |
60 | + } | |
61 | + | |
62 | + } | |
63 | +} | |
64 | + | |
65 | + | |
66 | + | |
67 | +#endif | |
0 | 68 | \ No newline at end of file | ... | ... |
1 | +#ifndef STIM_CUDA_ARRAY_COS_H | |
2 | +#define STIM_CUDA_ARRAY_COS_H | |
3 | + | |
4 | +#include <iostream> | |
5 | +#include <cuda.h> | |
6 | +#include <cmath> | |
7 | +#include <stim/cuda/cudatools.h> | |
8 | + | |
9 | +namespace stim{ | |
10 | + namespace cuda{ | |
11 | + | |
12 | + template<typename T> | |
13 | + __global__ void cuda_cos(T* ptr1, T* out, unsigned int N){ | |
14 | + | |
15 | + //calculate the 1D index for this thread | |
16 | + int idx = blockIdx.x * blockDim.x + threadIdx.x; | |
17 | + | |
18 | + if(idx < N){ | |
19 | + out[idx] = cos(ptr1[idx]); | |
20 | + } | |
21 | + | |
22 | + } | |
23 | + | |
24 | + template<typename T> | |
25 | + void gpu_cos(T* ptr1, T* out, unsigned int N){ | |
26 | + | |
27 | + //get the maximum number of threads per block for the CUDA device | |
28 | + int threads = stim::maxThreadsPerBlock(); | |
29 | + | |
30 | + //calculate the number of blocks | |
31 | + int blocks = N / threads + 1; | |
32 | + | |
33 | + //call the kernel to do the multiplication | |
34 | + cuda_cos <<< blocks, threads >>>(ptr1, out, N); | |
35 | + | |
36 | + } | |
37 | + | |
38 | + template<typename T> | |
39 | + void cpu_cos(T* ptr1, T* cpu_out, unsigned int N){ | |
40 | + | |
41 | + //allocate memory on the GPU for the array | |
42 | + T* gpu_ptr1; | |
43 | + T* gpu_out; | |
44 | + HANDLE_ERROR( cudaMalloc( &gpu_ptr1, N * sizeof(T) ) ); | |
45 | + HANDLE_ERROR( cudaMalloc( &gpu_out, N * sizeof(T) ) ); | |
46 | + | |
47 | + //copy the array to the GPU | |
48 | + HANDLE_ERROR( cudaMemcpy( gpu_ptr1, ptr1, N * sizeof(T), cudaMemcpyHostToDevice) ); | |
49 | + | |
50 | + //call the GPU version of this function | |
51 | + gpu_cos<T>(gpu_ptr1 ,gpu_out, N); | |
52 | + | |
53 | + //copy the array back to the CPU | |
54 | + HANDLE_ERROR( cudaMemcpy( cpu_out, gpu_out, N * sizeof(T), cudaMemcpyDeviceToHost) ); | |
55 | + | |
56 | + //free allocated memory | |
57 | + cudaFree(gpu_ptr1); | |
58 | + cudaFree(gpu_out); | |
59 | + | |
60 | + } | |
61 | + | |
62 | + } | |
63 | +} | |
64 | + | |
65 | + | |
66 | + | |
67 | +#endif | |
0 | 68 | \ No newline at end of file | ... | ... |
1 | +#ifndef STIM_CUDA_ARRAY_DIVIDE_H | |
2 | +#define STIM_CUDA_ARRAY_DIVIDE_H | |
3 | + | |
4 | +#include <iostream> | |
5 | +#include <cuda.h> | |
6 | +#include <stim/cuda/cudatools.h> | |
7 | + | |
8 | +namespace stim{ | |
9 | + namespace cuda{ | |
10 | + | |
11 | + template<typename T> | |
12 | + __global__ void cuda_divide(T* ptr1, T* ptr2, T* quotient, unsigned int N){ | |
13 | + | |
14 | + //calculate the 1D index for this thread | |
15 | + int idx = blockIdx.x * blockDim.x + threadIdx.x; | |
16 | + | |
17 | + if(idx < N){ | |
18 | + quotient[idx] = ptr1[idx] / ptr2[idx]; | |
19 | + } | |
20 | + | |
21 | + } | |
22 | + | |
23 | + template<typename T> | |
24 | + void gpu_divide(T* ptr1, T* ptr2, T* quotient, unsigned int N){ | |
25 | + | |
26 | + //get the maximum number of threads per block for the CUDA device | |
27 | + int threads = stim::maxThreadsPerBlock(); | |
28 | + | |
29 | + //calculate the number of blocks | |
30 | + int blocks = N / threads + 1; | |
31 | + | |
32 | + //call the kernel to do the multiplication | |
33 | + cuda_divide <<< blocks, threads >>>(ptr1, ptr2, quotient, N); | |
34 | + | |
35 | + } | |
36 | + | |
37 | + template<typename T> | |
38 | + void cpu_divide(T* ptr1, T* ptr2, T* cpu_quotient, unsigned int N){ | |
39 | + | |
40 | + //allocate memory on the GPU for the array | |
41 | + T* gpu_ptr1; | |
42 | + T* gpu_ptr2; | |
43 | + T* gpu_quotient; | |
44 | + HANDLE_ERROR( cudaMalloc( &gpu_ptr1, N * sizeof(T) ) ); | |
45 | + HANDLE_ERROR( cudaMalloc( &gpu_ptr2, N * sizeof(T) ) ); | |
46 | + HANDLE_ERROR( cudaMalloc( &gpu_quotient, N * sizeof(T) ) ); | |
47 | + | |
48 | + //copy the array to the GPU | |
49 | + HANDLE_ERROR( cudaMemcpy( gpu_ptr1, ptr1, N * sizeof(T), cudaMemcpyHostToDevice) ); | |
50 | + HANDLE_ERROR( cudaMemcpy( gpu_ptr2, ptr2, N * sizeof(T), cudaMemcpyHostToDevice) ); | |
51 | + | |
52 | + //call the GPU version of this function | |
53 | + gpu_divide<T>(gpu_ptr1, gpu_ptr2 ,gpu_quotient, N); | |
54 | + | |
55 | + //copy the array back to the CPU | |
56 | + HANDLE_ERROR( cudaMemcpy( cpu_quotient, gpu_quotient, N * sizeof(T), cudaMemcpyDeviceToHost) ); | |
57 | + | |
58 | + //free allocated memory | |
59 | + cudaFree(gpu_ptr1); | |
60 | + cudaFree(gpu_ptr2); | |
61 | + cudaFree(gpu_quotient); | |
62 | + | |
63 | + } | |
64 | + | |
65 | + } | |
66 | +} | |
67 | + | |
68 | + | |
69 | + | |
70 | +#endif | |
0 | 71 | \ No newline at end of file | ... | ... |
1 | +#ifndef STIM_CUDA_ARRAY_MULTIPLY_H | |
2 | +#define STIM_CUDA_ARRAY_MULTIPLY_H | |
3 | + | |
4 | +#include <iostream> | |
5 | +#include <cuda.h> | |
6 | +#include <stim/cuda/cudatools.h> | |
7 | + | |
8 | +namespace stim{ | |
9 | + namespace cuda{ | |
10 | + | |
11 | + template<typename T> | |
12 | + __global__ void cuda_multiply(T* ptr1, T* ptr2, T* product, unsigned int N){ | |
13 | + | |
14 | + //calculate the 1D index for this thread | |
15 | + int idx = blockIdx.x * blockDim.x + threadIdx.x; | |
16 | + | |
17 | + if(idx < N){ | |
18 | + product[idx] = ptr1[idx] * ptr2[idx]; | |
19 | + } | |
20 | + | |
21 | + } | |
22 | + | |
23 | + template<typename T> | |
24 | + void gpu_multiply(T* ptr1, T* ptr2, T* product, unsigned int N){ | |
25 | + | |
26 | + //get the maximum number of threads per block for the CUDA device | |
27 | + int threads = stim::maxThreadsPerBlock(); | |
28 | + | |
29 | + //calculate the number of blocks | |
30 | + int blocks = N / threads + 1; | |
31 | + | |
32 | + //call the kernel to do the multiplication | |
33 | + cuda_multiply <<< blocks, threads >>>(ptr1, ptr2, product, N); | |
34 | + | |
35 | + } | |
36 | + | |
37 | + template<typename T> | |
38 | + void cpu_multiply(T* ptr1, T* ptr2, T* cpu_product, unsigned int N){ | |
39 | + | |
40 | + //allocate memory on the GPU for the array | |
41 | + T* gpu_ptr1; | |
42 | + T* gpu_ptr2; | |
43 | + T* gpu_product; | |
44 | + HANDLE_ERROR( cudaMalloc( &gpu_ptr1, N * sizeof(T) ) ); | |
45 | + HANDLE_ERROR( cudaMalloc( &gpu_ptr2, N * sizeof(T) ) ); | |
46 | + HANDLE_ERROR( cudaMalloc( &gpu_product, N * sizeof(T) ) ); | |
47 | + | |
48 | + //copy the array to the GPU | |
49 | + HANDLE_ERROR( cudaMemcpy( gpu_ptr1, ptr1, N * sizeof(T), cudaMemcpyHostToDevice) ); | |
50 | + HANDLE_ERROR( cudaMemcpy( gpu_ptr2, ptr2, N * sizeof(T), cudaMemcpyHostToDevice) ); | |
51 | + | |
52 | + //call the GPU version of this function | |
53 | + gpu_multiply<T>(gpu_ptr1, gpu_ptr2 ,gpu_product, N); | |
54 | + | |
55 | + //copy the array back to the CPU | |
56 | + HANDLE_ERROR( cudaMemcpy( cpu_product, gpu_product, N * sizeof(T), cudaMemcpyDeviceToHost) ); | |
57 | + | |
58 | + //free allocated memory | |
59 | + cudaFree(gpu_ptr1); | |
60 | + cudaFree(gpu_ptr2); | |
61 | + cudaFree(gpu_product); | |
62 | + | |
63 | + } | |
64 | + | |
65 | + } | |
66 | +} | |
67 | + | |
68 | + | |
69 | + | |
70 | +#endif | |
0 | 71 | \ No newline at end of file | ... | ... |
1 | +#ifndef STIM_CUDA_ARRAY_SIN_H | |
2 | +#define STIM_CUDA_ARRAY_SIN_H | |
3 | + | |
4 | +#include <iostream> | |
5 | +#include <cuda.h> | |
6 | +#include <cmath> | |
7 | +#include <stim/cuda/cudatools.h> | |
8 | + | |
9 | +namespace stim{ | |
10 | + namespace cuda{ | |
11 | + | |
12 | + template<typename T> | |
13 | + __global__ void cuda_sin(T* ptr1, T* out, unsigned int N){ | |
14 | + | |
15 | + //calculate the 1D index for this thread | |
16 | + int idx = blockIdx.x * blockDim.x + threadIdx.x; | |
17 | + | |
18 | + if(idx < N){ | |
19 | + out[idx] = sin(ptr1[idx]); | |
20 | + } | |
21 | + | |
22 | + } | |
23 | + | |
24 | + template<typename T> | |
25 | + void gpu_sin(T* ptr1, T* out, unsigned int N){ | |
26 | + | |
27 | + //get the maximum number of threads per block for the CUDA device | |
28 | + int threads = stim::maxThreadsPerBlock(); | |
29 | + | |
30 | + //calculate the number of blocks | |
31 | + int blocks = N / threads + 1; | |
32 | + | |
33 | + //call the kernel to do the multiplication | |
34 | + cuda_sin <<< blocks, threads >>>(ptr1, out, N); | |
35 | + | |
36 | + } | |
37 | + | |
38 | + template<typename T> | |
39 | + void cpu_sin(T* ptr1, T* cpu_out, unsigned int N){ | |
40 | + | |
41 | + //allocate memory on the GPU for the array | |
42 | + T* gpu_ptr1; | |
43 | + T* gpu_out; | |
44 | + HANDLE_ERROR( cudaMalloc( &gpu_ptr1, N * sizeof(T) ) ); | |
45 | + HANDLE_ERROR( cudaMalloc( &gpu_out, N * sizeof(T) ) ); | |
46 | + | |
47 | + //copy the array to the GPU | |
48 | + HANDLE_ERROR( cudaMemcpy( gpu_ptr1, ptr1, N * sizeof(T), cudaMemcpyHostToDevice) ); | |
49 | + | |
50 | + //call the GPU version of this function | |
51 | + gpu_sin<T>(gpu_ptr1 ,gpu_out, N); | |
52 | + | |
53 | + //copy the array back to the CPU | |
54 | + HANDLE_ERROR( cudaMemcpy( cpu_out, gpu_out, N * sizeof(T), cudaMemcpyDeviceToHost) ); | |
55 | + | |
56 | + //free allocated memory | |
57 | + cudaFree(gpu_ptr1); | |
58 | + cudaFree(gpu_out); | |
59 | + | |
60 | + } | |
61 | + | |
62 | + } | |
63 | +} | |
64 | + | |
65 | + | |
66 | + | |
67 | +#endif | |
0 | 68 | \ No newline at end of file | ... | ... |
1 | +#include <stim/image/image.h> | |
2 | +#include <cmath> | |
3 | +#include <stim/visualization/colormap.h> | |
4 | +#include <stim/image/image_contour_detection.h> | |
5 | +#include <sstream> | |
6 | + | |
7 | + | |
8 | +void array_multiply(float* lhs, float rhs, unsigned int N); | |
9 | +void array_add(float* ptr1, float* ptr2, float* sum, unsigned int N); | |
10 | + | |
11 | +/// This function evaluates the cPb given an multi-channel image | |
12 | + | |
13 | +/// @param img is the multi-channel image | |
14 | +/// @param r is an array of radii for different scaled discs(filters) | |
15 | +/// @param alpha is is an array of weights for different scaled discs(filters) | |
16 | +/// @param s is the number of scales | |
17 | + | |
18 | +stim::image<float> cPb(stim::image<float> img, int* r, float* alpha, int s){ | |
19 | + | |
20 | + unsigned int w = img.width(); // get the width of picture | |
21 | + unsigned int h = img.height(); // get the height of picture | |
22 | + unsigned int c = img.channels(); // get the channels of picture | |
23 | + | |
24 | + | |
25 | + stim::image<float> cPb(w, h, 1); // allocate space for cPb | |
26 | + unsigned size = cPb.size(); // get the size of cPb | |
27 | + memset ( cPb.data(), 0, size * sizeof(float)); // initialize all the pixels of cPb to 0 | |
28 | + | |
29 | + | |
30 | + unsigned int N = w * h; // get the number of pixels | |
31 | + int sigma_n = 3; // set the number of standard deviations used to define the sigma | |
32 | + | |
33 | + std::ostringstream ss; // (optional) set the stream to designate the test result file | |
34 | + | |
35 | + stim::image<float> temp; // set the temporary image to store the addtion result | |
36 | + | |
37 | + for (int i = 0; i < c; i++){ | |
38 | + for (int j = 0; j < s; j++){ | |
39 | + | |
40 | + ss << "data_output/cPb_slice"<< i*s + j << ".bmp"; // set the name for test result file (optional) | |
41 | + std::string sss = ss.str(); | |
42 | + | |
43 | + // get the gaussian gradient by convolving each image slice with the mask | |
44 | + temp = Pb(img.channel(i), r[i*s + j], sigma_n); | |
45 | + | |
46 | + // output the test result of each slice (optional) | |
47 | + //stim::cpu2image(temp.data(), sss, w, h, stim::cmBrewer); | |
48 | + | |
49 | + // multiply each gaussian gradient with its weight | |
50 | + array_multiply(temp.data(), alpha[i*s + j], N); | |
51 | + | |
52 | + // add up all the weighted gaussian gradients | |
53 | + array_add(cPb.data(), temp.data(), cPb.data(), N); | |
54 | + | |
55 | + ss.str(""); //(optional) clear the space for stream | |
56 | + | |
57 | + } | |
58 | + } | |
59 | + | |
60 | + float max = cPb.maxv(); // get the maximum of cPb used for normalization | |
61 | + array_multiply(cPb.data(), 1/max, N); // normalize the cPb | |
62 | + | |
63 | + // output the test result of cPb (optional) | |
64 | + //stim::cpu2image(cPb.data(), "data_output/cPb_0916.bmp", w, h, stim::cmBrewer); | |
65 | + | |
66 | + return cPb; | |
67 | +} | ... | ... |
1 | +#include <stim/image/image.h> | |
2 | +//#include <cmath> | |
3 | +#include <stim/visualization/colormap.h> | |
4 | +#include <stim/image/image_contour_detection.h> | |
5 | + | |
6 | +/// This function generates the first-order gaussian derivative filter gx gy, | |
7 | +/// convolves the image with gx gy, | |
8 | +/// and returns an image class which channel(0) is Ix and channel(1) is Iy | |
9 | + | |
10 | +/// @param img is the one-channel image | |
11 | +/// @param r is an array of radii for different scaled discs(filters) | |
12 | +/// @param sigma_n is the number of standard deviations used to define the sigma | |
13 | + | |
14 | +void conv2_sep(float* img, unsigned int x, unsigned int y, float* kernel0, unsigned int k0, float* kernel1, unsigned int k1); | |
15 | +//void array_abs(float* img, unsigned int N); | |
16 | + | |
17 | +stim::image<float> Gd1(stim::image<float> image, int r, unsigned int sigma_n){ | |
18 | + | |
19 | + unsigned int w = image.width(); // get the width of picture | |
20 | + unsigned int h = image.height(); // get the height of picture | |
21 | + unsigned N = w * h; // get the number of pixels of picture | |
22 | + int winsize = 2 * r + 1; // set the winsdow size of disc(filter) | |
23 | + float sigma = float(r)/float(sigma_n); // calculate the sigma used in gaussian function | |
24 | + | |
25 | + stim::image<float> I(w, h, 1, 2); // allocate space for return image class | |
26 | + stim::image<float> Ix(w, h); // allocate space for Ix | |
27 | + stim::image<float> Iy(w, h); // allocate space for Iy | |
28 | + Ix = image; // initialize Ix | |
29 | + Iy = image; // initialize Iy | |
30 | + | |
31 | + float* array_x1; | |
32 | + array_x1 = new float[winsize]; //allocate space for the 1D x-oriented gaussian derivative filter array_x1 for gx | |
33 | + float* array_y1; | |
34 | + array_y1 = new float[winsize]; //allocate space for the 1D y-oriented gaussian derivative filter array_y1 for gx | |
35 | + float* array_x2; | |
36 | + array_x2 = new float[winsize]; //allocate space for the 1D x-oriented gaussian derivative filter array_x2 for gy | |
37 | + float* array_y2; | |
38 | + array_y2 = new float[winsize]; //allocate space for the 1D y-oriented gaussian derivative filter array_y2 for gy | |
39 | + | |
40 | + | |
41 | + for (int i = 0; i < winsize; i++){ | |
42 | + | |
43 | + int x = i - r; //range of x | |
44 | + int y = i - r; //range of y | |
45 | + | |
46 | + // create the 1D x-oriented gaussian derivative filter array_x1 for gx | |
47 | + array_x1[i] = (-1) * x * exp((-1)*(pow(x, 2))/(2*pow(sigma, 2))); | |
48 | + // create the 1D y-oriented gaussian derivative filter array_y1 for gx | |
49 | + array_y1[i] = exp((-1)*(pow(y, 2))/(2*pow(sigma, 2))); | |
50 | + // create the 1D x-oriented gaussian derivative filter array_x2 for gy | |
51 | + array_x2[i] = exp((-1)*(pow(x, 2))/(2*pow(sigma, 2))); | |
52 | + // create the 1D y-oriented gaussian derivative filter array_y2 for gy | |
53 | + array_y2[i] = (-1) * y * exp((-1)*(pow(y, 2))/(2*pow(sigma, 2))); | |
54 | + } | |
55 | + | |
56 | + //stim::cpu2image(array_x1, "data_output/array_x1_0915.bmp", winsize, 1, stim::cmBrewer); // (optional) show the mask result | |
57 | + //stim::cpu2image(array_y1, "data_output/array_y1_0915.bmp", winsize, 1, stim::cmBrewer); // (optional) show the mask result | |
58 | + //stim::cpu2image(array_x2, "data_output/array_x2_0915.bmp", winsize, 1, stim::cmBrewer); // (optional) show the mask result | |
59 | + //stim::cpu2image(array_y2, "data_output/array_y2_0915.bmp", winsize, 1, stim::cmBrewer); // (optional) show the mask result | |
60 | + | |
61 | + // get Ix by convolving the image with gx | |
62 | + conv2_sep(Ix.data(), w, h, array_x1, winsize, array_y1, winsize); | |
63 | + | |
64 | + //stim::cpu2image(Ix.data(), "data_output/Ix_0915.bmp", w, h, stim::cmBrewer); | |
65 | + // get Iy by convolving the image with gy | |
66 | + conv2_sep(Iy.data(), w, h, array_x2, winsize, array_y2, winsize); | |
67 | + | |
68 | + //stim::cpu2image(Iy.data(), "data_output/Iy_0915.bmp", w, h, stim::cmBrewer); | |
69 | + | |
70 | + delete [] array_x1; //free the memory of array_x1 | |
71 | + delete [] array_y1; //free the memory of array_y1 | |
72 | + delete [] array_x2; //free the memory of array_x2 | |
73 | + delete [] array_y2; //free the memory of array_y2 | |
74 | + | |
75 | + I.set_channel(0, Ix.data()); | |
76 | + I.set_channel(1, Iy.data()); | |
77 | + | |
78 | + return I; | |
79 | + | |
80 | +} | |
0 | 81 | \ No newline at end of file | ... | ... |
1 | +#include <stim/image/image.h> | |
2 | +#include <cmath> | |
3 | +#include <stim/visualization/colormap.h> | |
4 | +#include <stim/image/image_contour_detection.h> | |
5 | + | |
6 | +#define PI 3.1415926 | |
7 | + | |
8 | +void array_multiply(float* lhs, float rhs, unsigned int N); | |
9 | +void array_add(float* ptr1, float* ptr2, float* sum, unsigned int N); | |
10 | +void array_abs(float* img, unsigned int N); | |
11 | + | |
12 | +/// This function evaluates the theta-dependent odd symmetric gaussian derivative gradient of an one-channel image | |
13 | + | |
14 | +/// @param img is the one-channel image | |
15 | +/// @param r is an array of radii for different scaled discs(filters) | |
16 | +/// @param sigma_n is the number of standard deviations used to define the sigma | |
17 | +/// @param theta is angle used for computing the gradient | |
18 | + | |
19 | +stim::image<float> Gd_odd(stim::image<float> image, int r, unsigned int sigma_n, float theta){ | |
20 | + | |
21 | + float theta_r = (theta * PI)/180; //change angle unit from degree to rad | |
22 | + | |
23 | + unsigned int w = image.width(); // get the width of picture | |
24 | + unsigned int h = image.height(); // get the height of picture | |
25 | + unsigned N = w * h; // get the number of pixels of picture | |
26 | + int winsize = 2 * r + 1; // set the winsdow size of disc(filter) | |
27 | + | |
28 | + stim::image<float> I(w, h, 1, 2); // allocate space for return image of Gd1 | |
29 | + stim::image<float> Ix(w, h); // allocate space for Ix | |
30 | + stim::image<float> Iy(w, h); // allocate space for Iy | |
31 | + stim::image<float> Gd_odd_theta(w, h); // allocate space for Pb | |
32 | + | |
33 | + I = Gd1(image, r, sigma_n); // calculate the Ix, Iy | |
34 | + Ix = I.channel(0); | |
35 | + Iy = I.channel(1); | |
36 | + | |
37 | + array_multiply(Ix.data(), cos(theta_r), N); //Ix = Ix*cos(theta_r) | |
38 | + array_multiply(Iy.data(), sin(theta_r), N); //Iy = Iy*sin(theta_r) | |
39 | + array_add(Ix.data(), Iy.data(), Gd_odd_theta.data(), N); //Gd_odd_theta = Ix + Iy; | |
40 | + array_abs(Gd_odd_theta.data(), N); | |
41 | + | |
42 | + //stim::cpu2image(I.channel(0).data(), "data_output/Gd_odd_x_0919.bmp", w, h, stim::cmBrewer); | |
43 | + //stim::cpu2image(I.channel(1).data(), "data_output/Gd_odd_y_0919.bmp", w, h, stim::cmBrewer); | |
44 | + //stim::cpu2image(Gd_odd_theta.data(), "data_output/Gd_odd_theta_0919.bmp", w, h, stim::cmBrewer); | |
45 | + | |
46 | + return Gd_odd_theta; | |
47 | + | |
48 | +} | ... | ... |
1 | +#include <stim/image/image.h> | |
2 | +//#include <cmath> | |
3 | +#include <stim/visualization/colormap.h> | |
4 | +#include <stim/image/image_contour_detection.h> | |
5 | + | |
6 | +/// This function generates the second-order gaussian derivative filter gxx gyy, | |
7 | +/// convolves the image with gxx gyy, | |
8 | +/// and returns an image class which channel(0) is Ixx and channel(1) is Iyy | |
9 | + | |
10 | +/// @param img is the one-channel image | |
11 | +/// @param r is an array of radii for different scaled discs(filters) | |
12 | +/// @param sigma_n is the number of standard deviations used to define the sigma | |
13 | + | |
14 | +void conv2_sep(float* img, unsigned int x, unsigned int y, float* kernel0, unsigned int k0, float* kernel1, unsigned int k1); | |
15 | +//void array_abs(float* img, unsigned int N); | |
16 | + | |
17 | +stim::image<float> Gd2(stim::image<float> image, int r, unsigned int sigma_n){ | |
18 | + | |
19 | + unsigned int w = image.width(); // get the width of picture | |
20 | + unsigned int h = image.height(); // get the height of picture | |
21 | + unsigned N = w * h; // get the number of pixels of picture | |
22 | + int winsize = 2 * r + 1; // set the winsdow size of disc(filter) | |
23 | + float sigma = float(r)/float(sigma_n); // calculate the sigma used in gaussian function | |
24 | + | |
25 | + stim::image<float> I(w, h, 1, 2); // allocate space for return image class | |
26 | + stim::image<float> Ixx(w, h); // allocate space for Ixx | |
27 | + stim::image<float> Iyy(w, h); // allocate space for Iyy | |
28 | + Ixx = image; // initialize Ixx | |
29 | + Iyy = image; // initialize Iyy | |
30 | + | |
31 | + float* array_x1; | |
32 | + array_x1 = new float[winsize]; //allocate space for the 1D x-oriented gaussian derivative filter array_x1 for gxx | |
33 | + float* array_y1; | |
34 | + array_y1 = new float[winsize]; //allocate space for the 1D y-oriented gaussian derivative filter array_y1 for gxx | |
35 | + float* array_x2; | |
36 | + array_x2 = new float[winsize]; //allocate space for the 1D x-oriented gaussian derivative filter array_x2 for gyy | |
37 | + float* array_y2; | |
38 | + array_y2 = new float[winsize]; //allocate space for the 1D y-oriented gaussian derivative filter array_y2 for gyy | |
39 | + | |
40 | + | |
41 | + for (int i = 0; i < winsize; i++){ | |
42 | + | |
43 | + int x = i - r; //range of x | |
44 | + int y = i - r; //range of y | |
45 | + | |
46 | + // create the 1D x-oriented gaussian derivative filter array_x1 for gxx | |
47 | + array_x1[i] = (-1) * (1 - pow(x, 2)) * exp((-1)*(pow(x, 2))/(2*pow(sigma, 2))); | |
48 | + // create the 1D y-oriented gaussian derivative filter array_y1 for gxx | |
49 | + array_y1[i] = exp((-1)*(pow(y, 2))/(2*pow(sigma, 2))); | |
50 | + // create the 1D x-oriented gaussian derivative filter array_x2 for gyy | |
51 | + array_x2[i] = exp((-1)*(pow(x, 2))/(2*pow(sigma, 2))); | |
52 | + // create the 1D y-oriented gaussian derivative filter array_y2 for gyy | |
53 | + array_y2[i] = (-1) * (1 - pow(y, 2)) * exp((-1)*(pow(y, 2))/(2*pow(sigma, 2))); | |
54 | + } | |
55 | + | |
56 | + //stim::cpu2image(array_x1, "data_output/array_x1_0915.bmp", winsize, 1, stim::cmBrewer); // (optional) show the mask result | |
57 | + //stim::cpu2image(array_y1, "data_output/array_y1_0915.bmp", winsize, 1, stim::cmBrewer); // (optional) show the mask result | |
58 | + //stim::cpu2image(array_x2, "data_output/array_x2_0915.bmp", winsize, 1, stim::cmBrewer); // (optional) show the mask result | |
59 | + //stim::cpu2image(array_y2, "data_output/array_y2_0915.bmp", winsize, 1, stim::cmBrewer); // (optional) show the mask result | |
60 | + | |
61 | + // get Ixx by convolving the image with gxx | |
62 | + conv2_sep(Ixx.data(), w, h, array_x1, winsize, array_y1, winsize); | |
63 | + | |
64 | + //stim::cpu2image(Ixx.data(), "data_output/Ixx_0915.bmp", w, h, stim::cmBrewer); | |
65 | + // get Iyy by convolving the image with gyy | |
66 | + conv2_sep(Iyy.data(), w, h, array_x2, winsize, array_y2, winsize); | |
67 | + | |
68 | + //stim::cpu2image(Iyy.data(), "data_output/Iyy_0915.bmp", w, h, stim::cmBrewer); | |
69 | + | |
70 | + delete [] array_x1; //free the memory of array_x1 | |
71 | + delete [] array_y1; //free the memory of array_y1 | |
72 | + delete [] array_x2; //free the memory of array_x2 | |
73 | + delete [] array_y2; //free the memory of array_y2 | |
74 | + | |
75 | + I.set_channel(0, Ixx.data()); | |
76 | + I.set_channel(1, Iyy.data()); | |
77 | + | |
78 | + return I; | |
79 | + | |
80 | +} | |
0 | 81 | \ No newline at end of file | ... | ... |
1 | +#include <stim/image/image.h> | |
2 | +#include <cmath> | |
3 | +#include <stim/visualization/colormap.h> | |
4 | +#include <stim/image/image_contour_detection.h> | |
5 | + | |
6 | +/// This function evaluates the theta-dependent even-symmetric gaussian derivative gradient of an one-channel image | |
7 | + | |
8 | +/// @param img is the one-channel image | |
9 | +/// @param r is an array of radii for different scaled discs(filters) | |
10 | +/// @param sigma_n is the number of standard deviations used to define the sigma | |
11 | +/// @param theta is angle used for computing the gradient | |
12 | + | |
13 | +void conv2(float* img, float* mask, float* cpu_copy, unsigned int w, unsigned int h, unsigned int M); | |
14 | +void array_abs(float* img, unsigned int N); | |
15 | + | |
16 | +stim::image<float> Gd_even(stim::image<float> image, int r, unsigned int sigma_n, float theta){ | |
17 | + | |
18 | + unsigned int w = image.width(); // get the width of picture | |
19 | + unsigned int h = image.height(); // get the height of picture | |
20 | + unsigned N = w * h; // get the number of pixels of picture | |
21 | + int winsize = 2 * r + 1; // set the winsdow size of disc(filter) | |
22 | + float sigma = float(r)/float(sigma_n); // calculate the sigma used in gaussian function | |
23 | + | |
24 | + stim::image<float> I(w, h, 1, 2); // allocate space for return image class | |
25 | + stim::image<float> Gd_even_theta(w, h); // allocate space for Gd_even_theta | |
26 | + stim::image<float> mask_x(winsize, winsize); // allocate space for x-axis-oriented filter | |
27 | + stim::image<float> mask_r(winsize, winsize); // allocate space for theta-oriented filter | |
28 | + | |
29 | + for (int j = 0; j < winsize; j++){ | |
30 | + for (int i = 0; i< winsize; i++){ | |
31 | + | |
32 | + int x = i - r; //range of x | |
33 | + int y = j - r; //range of y | |
34 | + | |
35 | + // create the x-oriented gaussian derivative filter mask_x | |
36 | + mask_x.data()[j*winsize + i] = (-1) * (1 - pow(x, 2)) * exp((-1)*(pow(x, 2))/(2*pow(sigma, 2))) * exp((-1)*(pow(y, 2))/(2*pow(sigma, 2))); | |
37 | + | |
38 | + } | |
39 | + } | |
40 | + | |
41 | + mask_r = mask_x.rotate(theta, r, r); | |
42 | + //mask_r = mask_x.rotate(45, r, r); | |
43 | + //stim::cpu2image(mask_r.data(), "data_output/mask_r_0919.bmp", winsize, winsize, stim::cmBrewer); | |
44 | + | |
45 | + // do the 2D convolution with image and mask | |
46 | + conv2(image.data(), mask_r.data(), Gd_even_theta.data(), w, h, winsize); | |
47 | + array_abs(Gd_even_theta.data(), N); | |
48 | + | |
49 | + //stim::cpu2image(Gd_even_theta.data(), "data_output/Gd_even_theta_0919.bmp", w, h, stim::cmGrayscale); | |
50 | + | |
51 | + return Gd_even_theta; | |
52 | +} | |
0 | 53 | \ No newline at end of file | ... | ... |
1 | +#include <stim/image/image.h> | |
2 | +//#include <cmath> | |
3 | +#include <stim/visualization/colormap.h> | |
4 | +#include <stim/image/image_contour_detection.h> | |
5 | +#include <opencv2/opencv.hpp> | |
6 | +#include <iostream> | |
7 | + | |
8 | +/// This function use cvkmeans to cluster given textons | |
9 | + | |
10 | +/// @param testons is a multi-channel image | |
11 | +/// @param k is the number of clusters | |
12 | + | |
13 | +stim::image<float> kmeans(stim::image<float> textons, unsigned int K){ | |
14 | + | |
15 | + unsigned int w = textons.width(); // get the width of picture | |
16 | + unsigned int h = textons.height(); // get the height of picture | |
17 | + unsigned int feature_n = textons.channels(); // get the spectrum of picture | |
18 | + unsigned int N = w * h; // get the number of pixels | |
19 | + | |
20 | + float* sample1 = (float*) malloc(sizeof(float) * N * feature_n); //allocate the space for textons | |
21 | + | |
22 | + //reallocate a multi-channel texton image to a single-channel image | |
23 | + for(unsigned int c = 0; c < feature_n; c++){ | |
24 | + | |
25 | + stim::image<float> temp; | |
26 | + temp = textons.channel(c); | |
27 | + | |
28 | + for(unsigned int j = 0; j < N; j++){ | |
29 | + | |
30 | + sample1[c + j * feature_n] = temp.data()[j]; | |
31 | + } | |
32 | + } | |
33 | + | |
34 | + | |
35 | + cv::Mat sample2(N, feature_n, CV_32F, sample1); //copy image to cv::mat | |
36 | + | |
37 | + //(optional) show the test result | |
38 | + //imshow("sample2", sample2); | |
39 | + | |
40 | + | |
41 | + cv::TermCriteria criteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 0.1); // set stop-criteria for kmeans iteration | |
42 | + cv::Mat labels(N, 1, CV_8U, cvScalarAll(0)); // allocate space for kmeans output | |
43 | + cv::Mat centers; // allocate space for kmeans output | |
44 | + | |
45 | + unsigned int test_times = 2; // set the number of times of trying kmeans, it will return the best result | |
46 | + | |
47 | + cv::kmeans(sample2, K, labels, criteria, test_times, cv::KMEANS_PP_CENTERS, centers); // kmeans clustering | |
48 | + | |
49 | + //(optional) show the test result | |
50 | + //imwrite( "data_output/labels_1D.bmp", labels); | |
51 | + | |
52 | + stim::image<float> texture(w, h, 1, 1); // allocate space for texture | |
53 | + | |
54 | + for(unsigned int i = 0; i < N; i++){ // reshape the labels from iD array to image | |
55 | + | |
56 | + texture.data()[i] = labels.at<int>(i); | |
57 | + | |
58 | + } | |
59 | + | |
60 | + //texture.save("data_output/kmeans_test0924_2.bmp"); | |
61 | + | |
62 | + //(optional) show the test result | |
63 | + //stim::cpu2image(texture.data(), "data_output/kmeans_test.bmp", w, h, stim::cmBrewer); | |
64 | + | |
65 | + return texture; | |
66 | + | |
67 | +} | |
0 | 68 | \ No newline at end of file | ... | ... |
1 | +#include <stim/image/image.h> | |
2 | +#include <cmath> | |
3 | +#include <stim/visualization/colormap.h> | |
4 | +#include <stim/image/image_contour_detection.h> | |
5 | + | |
6 | +#define PI 3.1415926 | |
7 | + | |
8 | +void array_multiply(float* lhs, float rhs, unsigned int N); | |
9 | +void array_add(float* ptr1, float* ptr2, float* sum, unsigned int N); | |
10 | +void array_abs(float* img, unsigned int N); | |
11 | + | |
12 | +/// This function evaluates the center-surround(Laplacian of Gaussian) gaussian derivative gradient of an one-channel image | |
13 | + | |
14 | +/// @param img is the one-channel image | |
15 | +/// @param r is an array of radii for different scaled discs(filters) | |
16 | +/// @param sigma_n is the number of standard deviations used to define the sigma | |
17 | + | |
18 | +stim::image<float> Gd_center(stim::image<float> image, int r, unsigned int sigma_n){ | |
19 | + | |
20 | + unsigned int w = image.width(); // get the width of picture | |
21 | + unsigned int h = image.height(); // get the height of picture | |
22 | + unsigned N = w * h; // get the number of pixels of picture | |
23 | + int winsize = 2 * r + 1; // set the winsdow size of disc(filter) | |
24 | + | |
25 | + stim::image<float> I(w, h, 1, 2); // allocate space for return image of Gd2 | |
26 | + stim::image<float> Ixx(w, h); // allocate space for Ixx | |
27 | + stim::image<float> Iyy(w, h); // allocate space for Iyy | |
28 | + stim::image<float> Gd_center(w, h); // allocate space for Pb | |
29 | + | |
30 | + I = Gd2(image, r, sigma_n); // calculate the Ixx, Iyy | |
31 | + Ixx = I.channel(0); | |
32 | + Iyy = I.channel(1); | |
33 | + | |
34 | + array_add(Ixx.data(), Iyy.data(), Gd_center.data(), N); //Gd_center = Ixx + Iyy; | |
35 | + array_abs(Gd_center.data(), N); | |
36 | + | |
37 | + //stim::cpu2image(Gd_center.data(), "data_output/Gd_center_0919.bmp", w, h, stim::cmBrewer); | |
38 | + | |
39 | + return Gd_center; | |
40 | + | |
41 | +} | ... | ... |
1 | +#include <stim/image/image.h> | |
2 | +#include <cmath> | |
3 | +#include <stim/visualization/colormap.h> | |
4 | +#include <stim/image/image_contour_detection.h> | |
5 | +#include <sstream> | |
6 | + | |
7 | + | |
8 | +void array_multiply(float* lhs, float rhs, unsigned int N); | |
9 | +void array_add(float* ptr1, float* ptr2, float* sum, unsigned int N); | |
10 | +void chi_grad(float* img, float* cpu_copy, unsigned int w, unsigned int h, int r, unsigned int bin_n, unsigned int bin_size, float theta); | |
11 | + | |
12 | +/// This function evaluates the tPb given a grayscale image | |
13 | + | |
14 | +/// @param img is the multi-channel image | |
15 | +/// @param theta_n is the number of angles used for computing oriented chi-gradient | |
16 | +/// @param r is an array of radii for different scaled discs(filters) | |
17 | +/// @param alpha is is an array of weights for different scaled discs(filters) | |
18 | +/// @param s is the number of scales | |
19 | +/// @param K is the number of clusters | |
20 | + | |
21 | +stim::image<float> tPb(stim::image<float> img, int* r, float* alpha, unsigned int theta_n, unsigned int bin_n, int s, unsigned K){ | |
22 | + | |
23 | + unsigned int w = img.width(); // get the width of picture | |
24 | + unsigned int h = img.height(); // get the height of picture | |
25 | + unsigned int N = w * h; // get the number of pixels | |
26 | + | |
27 | + stim::image<float> img_textons(w, h, 1, theta_n*2+1); // allocate space for img_textons | |
28 | + stim::image<float> img_texture(w, h, 1, 1); // allocate space for img_texture | |
29 | + stim::image<float> tPb_theta(w, h, 1, 1); // allocate space for tPb_theta | |
30 | + stim::image<float> tPb(w, h, 1, 1); // allocate space for tPb | |
31 | + unsigned size = tPb_theta.size(); // get the size of tPb_theta | |
32 | + memset (tPb.data(), 0, size * sizeof(float)); // initialize all the pixels of tPb to 0 | |
33 | + stim::image<float> temp(w, h, 1, 1); // set the temporary image to store the addtion result | |
34 | + | |
35 | + std::ostringstream ss; // (optional) set the stream to designate the test result file | |
36 | + | |
37 | + | |
38 | + img_textons = textons(img, theta_n); | |
39 | + | |
40 | + img_texture = kmeans(img_textons, K); // changing kmeans result into float type is required | |
41 | + | |
42 | + stim::cpu2image(img_texture.data(), "data_output/texture_0925.bmp", w, h, stim::cmBrewer); | |
43 | + | |
44 | + | |
45 | + unsigned int max1 = img_texture.maxv(); // get the maximum of Pb used for normalization | |
46 | + unsigned int bin_size = (max1 + 1)/bin_n; // (whether"+1" or not depends on kmeans result) | |
47 | + | |
48 | + for (int i = 0; i < theta_n; i++){ | |
49 | + | |
50 | + float theta = 180 * ((float)i/theta_n); // calculate the even-splited angle for each tPb_theta | |
51 | + | |
52 | + memset (tPb_theta.data(), 0, size * sizeof(float)); // initialize all the pixels of tPb_theta to 0 | |
53 | + | |
54 | + //ss << "data_output/0922tPb_theta"<< theta << ".bmp"; // set the name for test result file (optional) | |
55 | + //std::string sss = ss.str(); | |
56 | + | |
57 | + for (int j = 0; j < s; j++){ | |
58 | + | |
59 | + // get the chi-gradient by convolving each image slice with the mask | |
60 | + chi_grad(img_texture.data(), temp.data(), w, h, r[j], bin_n, bin_size, theta); | |
61 | + | |
62 | + float max2 = temp.maxv(); // get the maximum of tPb_theta used for normalization | |
63 | + array_multiply(temp.data(), 1/max2, N); // normalize the tPb_theta | |
64 | + | |
65 | + //output the test result of each slice (optional) | |
66 | + //stim::cpu2image(temp.data(), "data_output/tPb_slice0924_2.bmp", w, h, stim::cmBrewer); | |
67 | + | |
68 | + // multiply each chi-gradient with its weight | |
69 | + array_multiply(temp.data(), alpha[j], N); | |
70 | + | |
71 | + // add up all the weighted chi-gradients | |
72 | + array_add(tPb_theta.data(), temp.data(), tPb_theta.data(), N); | |
73 | + | |
74 | + | |
75 | + } | |
76 | + | |
77 | + //ss.str(""); //(optional) clear the space for stream | |
78 | + | |
79 | + for(unsigned long ti = 0; ti < N; ti++){ | |
80 | + | |
81 | + if(tPb_theta.data()[ti] > tPb.data()[ti]){ //get the maximum value among all tPb_theta for ith pixel | |
82 | + tPb.data()[ti] = tPb_theta.data()[ti]; | |
83 | + } | |
84 | + | |
85 | + else{ | |
86 | + } | |
87 | + } | |
88 | + } | |
89 | + | |
90 | + float max3 = tPb.maxv(); // get the maximum of tPb used for normalization | |
91 | + array_multiply(tPb.data(), 1/max3, N); // normalize the tPb | |
92 | + | |
93 | + //output the test result of tPb (optional) | |
94 | + //stim::cpu2image(tPb.data(), "data_output/tPb_0922.bmp", w, h, stim::cmBrewer); | |
95 | + | |
96 | + return tPb; | |
97 | +} | ... | ... |
1 | +#include <stim/image/image.h> | |
2 | +//#include <cmath> | |
3 | +#include <stim/visualization/colormap.h> | |
4 | +#include <stim/image/image_contour_detection.h> | |
5 | +#include <sstream> | |
6 | + | |
7 | +/// This function convolve the grayscale image with a set of oriented Gaussian | |
8 | +/// derivative filters, and return a texton image with (theta_n*2+1) channels | |
9 | + | |
10 | +/// @param image is an one-channel grayscale image | |
11 | +/// @param theta_n is the number of angles used for computing the gradient | |
12 | + | |
13 | +stim::image<float> textons(stim::image<float> image, unsigned int theta_n){ | |
14 | + | |
15 | + unsigned int w = image.width(); // get the width of picture | |
16 | + unsigned int h = image.height(); // get the height of picture | |
17 | + unsigned N = w * h; // get the number of pixels of picture | |
18 | + | |
19 | + stim::image<float> textons(w, h, 1, theta_n*2+1); // allocate space for textons | |
20 | + stim::image<float> temp(w, h); // allocate space for temp | |
21 | + | |
22 | + unsigned int r_odd = 3; // set disc radii for odd-symmetric filter | |
23 | + unsigned int sigma_n_odd = 3; // set sigma_n for odd-symmetric filter | |
24 | + unsigned int r_even = 3; // set disc radii for even-symmetric filter | |
25 | + unsigned int sigma_n_even = 3; // set sigma_n for even-symmetric filter | |
26 | + unsigned int r_center = 3; // set disc radii for center-surround filter | |
27 | + unsigned int sigma_n_center = 3; // set sigma_n for center-surround filter | |
28 | + | |
29 | + //std::ostringstream ss1, ss2; // (optional) set the stream to designate the test result file | |
30 | + | |
31 | + for (unsigned int i = 0; i < theta_n; i++){ | |
32 | + | |
33 | + //ss1 << "data_output/textons_channel_"<< i << ".bmp"; // set the name for test result file (optional) | |
34 | + //std::string sss1 = ss1.str(); | |
35 | + //ss2 << "data_output/textons_channel_"<< i+theta_n << ".bmp"; // set the name for test result file (optional) | |
36 | + //std::string sss2 = ss2.str(); | |
37 | + | |
38 | + float theta = 180 * ((float)i/theta_n); // calculate the even-splited angle for each oriented filter | |
39 | + | |
40 | + temp = Gd_odd(image, r_odd, sigma_n_odd, theta); // return Gd_odd to temp | |
41 | + //stim::cpu2image(temp.data(), sss1, w, h, stim::cmBrewer); | |
42 | + textons.set_channel(i, temp.data()); // copy temp to ith channel of textons | |
43 | + | |
44 | + temp = Gd_even(image, r_even, sigma_n_even, theta); // return Gd_even to temp | |
45 | + //stim::cpu2image(temp.data(), sss2, w, h, stim::cmBrewer); | |
46 | + textons.set_channel(i + theta_n, temp.data()); // copy temp to (i+theta_n)th channel of textons | |
47 | + | |
48 | + //ss1.str(""); //(optional) clear the space for stream | |
49 | + //ss2.str(""); //(optional) clear the space for stream | |
50 | + | |
51 | + } | |
52 | + | |
53 | + temp = Gd_center(image, r_center, sigma_n_center); // return Gd_center to temp | |
54 | + //stim::cpu2image(temp.data(), "data_output/textons_channel_16.bmp", w, h, stim::cmBrewer); | |
55 | + textons.set_channel(theta_n*2, temp.data()); // copy temp to (theta_n*2)th channel of textons | |
56 | + | |
57 | + return textons; | |
58 | + | |
59 | +} | |
60 | + | |
61 | + | |
0 | 62 | \ No newline at end of file | ... | ... |
stim/cuda/cudatools/devices.h
... | ... | @@ -4,7 +4,7 @@ |
4 | 4 | #include <cuda.h> |
5 | 5 | |
6 | 6 | namespace stim{ |
7 | - | |
7 | +extern "C" | |
8 | 8 | int maxThreadsPerBlock() |
9 | 9 | { |
10 | 10 | int device; |
... | ... | @@ -13,6 +13,16 @@ int maxThreadsPerBlock() |
13 | 13 | cudaGetDeviceProperties(&props, device); |
14 | 14 | return props.maxThreadsPerBlock; |
15 | 15 | } |
16 | + | |
17 | +extern "C" | |
18 | +int sharedMemPerBlock() | |
19 | +{ | |
20 | + int device; | |
21 | + cudaGetDevice(&device); //get the id of the current device | |
22 | + cudaDeviceProp props; //device property structure | |
23 | + cudaGetDeviceProperties(&props, device); | |
24 | + return props.sharedMemPerBlock; | |
25 | +} | |
16 | 26 | } //end namespace rts |
17 | 27 | |
18 | 28 | #endif | ... | ... |
stim/cuda/ivote/update_dir.cuh
1 | +#ifndef STIM_CUDA_CHI_GRAD_H | |
2 | +#define STIM_CUDA_CHI_GRAD_H | |
3 | + | |
4 | +#include <iostream> | |
5 | +#include <cuda.h> | |
6 | +#include <cuda_runtime.h> | |
7 | +#include <stim/cuda/sharedmem.cuh> | |
8 | +#include <cmath> | |
9 | +#include <algorithm> | |
10 | + | |
11 | +#define PI 3.14159265358979 | |
12 | + | |
13 | +namespace stim{ | |
14 | + namespace cuda{ | |
15 | + | |
16 | + /// template parameter @param T is the data type | |
17 | + template<typename T> | |
18 | + __global__ void cuda_chi_grad(T* copy, cudaTextureObject_t texObj, unsigned int w, unsigned int h, int r, unsigned int bin_n, unsigned int bin_size, float theta){ | |
19 | + | |
20 | + double theta_r = ((theta) * PI)/180; //change angle unit from degree to rad | |
21 | + float sum = 0; | |
22 | + unsigned int N = w * h; | |
23 | + | |
24 | + //change 1D index to 2D cordinates | |
25 | + int xi = blockIdx.x * blockDim.x + threadIdx.x; | |
26 | + int yj = blockIdx.y; | |
27 | + int idx = yj * w + xi; | |
28 | + int shareidx = threadIdx.x; | |
29 | + | |
30 | + extern __shared__ unsigned short bin[]; | |
31 | + | |
32 | + | |
33 | + if(xi < w && yj < h){ | |
34 | + | |
35 | + int gidx; | |
36 | + int hidx; | |
37 | + | |
38 | + //initialize histogram bin to zeros | |
39 | + for(int i = 0; i < bin_n; i++){ | |
40 | + | |
41 | + bin[shareidx * bin_n + i] = 0; | |
42 | + __syncthreads(); | |
43 | + | |
44 | + } | |
45 | + | |
46 | + //get the histogram of the first half of disc and store in bin | |
47 | + for (int y = yj - r; y <= yj + r; y++){ | |
48 | + for (int x = xi - r; x <= xi + r; x++){ | |
49 | + | |
50 | + if ((y - yj)*cos(theta_r) + (x - xi)*sin(theta_r) > 0){ | |
51 | + | |
52 | + gidx = (int) tex2D<T>(texObj, (float)x/w, (float)y/h)/bin_size; | |
53 | + __syncthreads(); | |
54 | + | |
55 | + bin[shareidx * bin_n + gidx]++; | |
56 | + __syncthreads(); | |
57 | + | |
58 | + } | |
59 | + | |
60 | + else{} | |
61 | + } | |
62 | + } | |
63 | + | |
64 | + //initiallize the gbin | |
65 | + unsigned short* gbin = (unsigned short*) malloc(bin_n*sizeof(unsigned short)); | |
66 | + memset (gbin, 0, bin_n*sizeof(unsigned short)); | |
67 | + | |
68 | + //copy the histogram to gbin | |
69 | + for (unsigned int gi = 0; gi < bin_n; gi++){ | |
70 | + | |
71 | + gbin[gi] = bin[shareidx * bin_n + gi]; | |
72 | + | |
73 | + } | |
74 | + | |
75 | + //initialize histogram bin to zeros | |
76 | + for(int j = 0; j < bin_n; j++){ //initialize histogram bin to zeros | |
77 | + | |
78 | + bin[shareidx * bin_n + j] = 0; | |
79 | + __syncthreads(); | |
80 | + } | |
81 | + | |
82 | + //get the histogram of the second half of disc and store in bin | |
83 | + for (int y = yj - r; y <= yj + r; y++){ | |
84 | + for (int x = xi - r; x <= xi + r; x++){ | |
85 | + | |
86 | + if ((y - yj)*cos(theta_r) + (x - xi)*sin(theta_r) < 0){ | |
87 | + | |
88 | + hidx = (int) tex2D<T>(texObj, (float)x/w, (float)y/h)/bin_size; | |
89 | + __syncthreads(); | |
90 | + | |
91 | + bin[shareidx * bin_n + hidx]++; | |
92 | + __syncthreads(); | |
93 | + | |
94 | + } | |
95 | + else{} | |
96 | + } | |
97 | + } | |
98 | + | |
99 | + //initiallize the gbin | |
100 | + unsigned short* hbin = (unsigned short*) malloc(bin_n*sizeof(unsigned short)); | |
101 | + memset (hbin, 0, bin_n*sizeof(unsigned short)); | |
102 | + | |
103 | + //copy the histogram to hbin | |
104 | + for (unsigned int hi = 0; hi < bin_n; hi++){ | |
105 | + | |
106 | + hbin[hi] = bin[shareidx * bin_n + hi]; | |
107 | + | |
108 | + } | |
109 | + | |
110 | + //compare gbin, hbin and calculate the chi distance | |
111 | + for (int k = 0; k < bin_n; k++){ | |
112 | + | |
113 | + float flag; // set flag to avoid zero denominator | |
114 | + | |
115 | + if ((gbin[k] + hbin[k]) == 0){ | |
116 | + flag = 1; | |
117 | + } | |
118 | + else { | |
119 | + flag = (gbin[k] + hbin[k]); | |
120 | + __syncthreads(); | |
121 | + } | |
122 | + | |
123 | + sum += (gbin[k] - hbin[k])*(gbin[k] - hbin[k])/flag; | |
124 | + __syncthreads(); | |
125 | + | |
126 | + } | |
127 | + | |
128 | + // return chi-distance for each pixel | |
129 | + copy[idx] = sum; | |
130 | + | |
131 | + free(gbin); | |
132 | + free(hbin); | |
133 | + } | |
134 | + } | |
135 | + | |
136 | + | |
137 | + template<typename T> | |
138 | + void gpu_chi_grad(T* img, T* copy, unsigned int w, unsigned int h, int r, unsigned int bin_n, unsigned int bin_size, float theta){ | |
139 | + | |
140 | + unsigned long N = w * h; | |
141 | + | |
142 | + // Allocate CUDA array in device memory | |
143 | + | |
144 | + //define a channel descriptor for a single 32-bit channel | |
145 | + cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat); | |
146 | + cudaArray* cuArray; //declare the cuda array | |
147 | + cudaMallocArray(&cuArray, &channelDesc, w, h); //allocate the cuda array | |
148 | + | |
149 | + // Copy the image data from global memory to the array | |
150 | + cudaMemcpyToArray(cuArray, 0, 0, img, N * sizeof(T), cudaMemcpyDeviceToDevice); | |
151 | + | |
152 | + // Specify texture | |
153 | + struct cudaResourceDesc resDesc; //create a resource descriptor | |
154 | + memset(&resDesc, 0, sizeof(resDesc)); //set all values to zero | |
155 | + resDesc.resType = cudaResourceTypeArray; //specify the resource descriptor type | |
156 | + resDesc.res.array.array = cuArray; //add a pointer to the cuda array | |
157 | + | |
158 | + // Specify texture object parameters | |
159 | + struct cudaTextureDesc texDesc; //create a texture descriptor | |
160 | + memset(&texDesc, 0, sizeof(texDesc)); //set all values in the texture descriptor to zero | |
161 | + texDesc.addressMode[0] = cudaAddressModeMirror; //use wrapping (around the edges) | |
162 | + texDesc.addressMode[1] = cudaAddressModeMirror; | |
163 | + texDesc.filterMode = cudaFilterModePoint; //use linear filtering | |
164 | + texDesc.readMode = cudaReadModeElementType; //reads data based on the element type (32-bit floats) | |
165 | + texDesc.normalizedCoords = 1; //using normalized coordinates | |
166 | + | |
167 | + // Create texture object | |
168 | + cudaTextureObject_t texObj = 0; | |
169 | + cudaCreateTextureObject(&texObj, &resDesc, &texDesc, NULL); | |
170 | + | |
171 | + //get the maximum number of threads per block for the CUDA device | |
172 | + int threads = stim::maxThreadsPerBlock(); | |
173 | + int sharemax = stim::sharedMemPerBlock(); //get the size of Shared memory available per block in bytes | |
174 | + unsigned int shared_bytes = threads * bin_n * sizeof(unsigned short); | |
175 | + | |
176 | + if(threads * bin_n > sharemax){ | |
177 | + | |
178 | + cout <<"Error: shared_bytes exceeds the max value."<<'\n'; | |
179 | + exit(1); | |
180 | + | |
181 | + } | |
182 | + | |
183 | + | |
184 | + //calculate the number of blocks | |
185 | + dim3 blocks(w / threads + 1, h); | |
186 | + | |
187 | + //call the kernel to do the multiplication | |
188 | + cuda_chi_grad <<< blocks, threads, shared_bytes >>>(copy, texObj, w, h, r, bin_n, bin_size, theta); | |
189 | + | |
190 | + } | |
191 | + | |
192 | + template<typename T> | |
193 | + void cpu_chi_grad(T* img, T* cpu_copy, unsigned int w, unsigned int h, int r, unsigned int bin_n, unsigned int bin_size, float theta){ | |
194 | + | |
195 | + unsigned long N = w * h; | |
196 | + //allocate memory on the GPU for the array | |
197 | + T* gpu_img; | |
198 | + T* gpu_copy; | |
199 | + HANDLE_ERROR( cudaMalloc( &gpu_img, N * sizeof(T) ) ); | |
200 | + HANDLE_ERROR( cudaMalloc( &gpu_copy, N * sizeof(T) ) ); | |
201 | + | |
202 | + //copy the array to the GPU | |
203 | + HANDLE_ERROR( cudaMemcpy( gpu_img, img, N * sizeof(T), cudaMemcpyHostToDevice) ); | |
204 | + | |
205 | + //call the GPU version of this function | |
206 | + gpu_chi_grad<T>(gpu_img, gpu_copy, w, h, r, bin_n, bin_size, theta); | |
207 | + | |
208 | + //copy the array back to the CPU | |
209 | + HANDLE_ERROR( cudaMemcpy( cpu_copy, gpu_copy, N * sizeof(T), cudaMemcpyDeviceToHost) ); | |
210 | + | |
211 | + //free allocated memory | |
212 | + cudaFree(gpu_img); | |
213 | + cudaFree(gpu_copy); | |
214 | + | |
215 | + } | |
216 | + | |
217 | + } | |
218 | +} | |
219 | + | |
220 | + | |
221 | +#endif | |
0 | 222 | \ No newline at end of file | ... | ... |
stim/cuda/templates/conv2.cuh
... | ... | @@ -11,8 +11,7 @@ namespace stim{ |
11 | 11 | namespace cuda{ |
12 | 12 | |
13 | 13 | template<typename T> |
14 | - //__global__ void cuda_conv2(T* img, T* mask, T* copy, cudaTextureObject_t texObj, unsigned int w, unsigned int h, unsigned M){ | |
15 | - __global__ void cuda_conv2(T* img, T* mask, T* copy, cudaTextureObject_t texObj, unsigned int w, unsigned int h, unsigned M){ | |
14 | + __global__ void cuda_conv2(T* mask, T* copy, cudaTextureObject_t texObj, unsigned int w, unsigned int h, unsigned int M){ | |
16 | 15 | |
17 | 16 | |
18 | 17 | //the radius of mask |
... | ... | @@ -34,7 +33,7 @@ namespace stim{ |
34 | 33 | //copy[idx] = tex2D<float>(texObj, i+100, j+100); |
35 | 34 | //return; |
36 | 35 | |
37 | - //tex2D<float>(texObj, i, j); | |
36 | + tex2D<float>(texObj, (float)i/w, (float)j/h); | |
38 | 37 | |
39 | 38 | //allocate memory for result |
40 | 39 | T sum = 0; |
... | ... | @@ -51,9 +50,7 @@ namespace stim{ |
51 | 50 | int xx = x - (i - r); |
52 | 51 | int yy = y - (j - r); |
53 | 52 | |
54 | - //T temp = img[y * w + x] * mask[yy * M + xx]; | |
55 | - //sum += img[y * w + x] * mask[yy * M + xx]; | |
56 | - sum += tex2D<T>(texObj, x, y) * 1.0;//mask[yy * M + xx]; | |
53 | + sum += tex2D<T>(texObj, (float)x/w, (float)y/h) * mask[yy * M + xx]; | |
57 | 54 | } |
58 | 55 | } |
59 | 56 | copy[idx] = sum; |
... | ... | @@ -88,11 +85,11 @@ namespace stim{ |
88 | 85 | // Specify texture object parameters |
89 | 86 | struct cudaTextureDesc texDesc; //create a texture descriptor |
90 | 87 | memset(&texDesc, 0, sizeof(texDesc)); //set all values in the texture descriptor to zero |
91 | - texDesc.addressMode[0] = cudaAddressModeMirror; //use wrapping (around the edges) | |
92 | - texDesc.addressMode[1] = cudaAddressModeMirror; | |
88 | + texDesc.addressMode[0] = cudaAddressModeClamp; //use wrapping (around the edges) | |
89 | + texDesc.addressMode[1] = cudaAddressModeClamp; | |
93 | 90 | texDesc.filterMode = cudaFilterModePoint; //use linear filtering |
94 | 91 | texDesc.readMode = cudaReadModeElementType; //reads data based on the element type (32-bit floats) |
95 | - texDesc.normalizedCoords = 0; //not using normalized coordinates | |
92 | + texDesc.normalizedCoords = 1; //using normalized coordinates | |
96 | 93 | |
97 | 94 | // Create texture object |
98 | 95 | cudaTextureObject_t texObj = 0; |
... | ... | @@ -109,7 +106,6 @@ namespace stim{ |
109 | 106 | cuda_conv2 <<< blocks, threads >>>(img, mask, copy, texObj, w, h, M); |
110 | 107 | cudaDestroyTextureObject(texObj); |
111 | 108 | cudaFreeArray(cuArray); |
112 | - | |
113 | 109 | } |
114 | 110 | |
115 | 111 | template<typename T> | ... | ... |
stim/cuda/testKernel.cuh
... | ... | @@ -25,6 +25,17 @@ |
25 | 25 | { |
26 | 26 | cudaFree(print); ///temporary |
27 | 27 | } |
28 | + | |
29 | + __device__ | |
30 | + float templ(int x) | |
31 | + { | |
32 | + if(x < 16/6 || x > 16*5/6 || (x > 16*2/6 && x < 16*4/6)){ | |
33 | + return 1.0; | |
34 | + }else{ | |
35 | + return 0.0; | |
36 | + } | |
37 | + | |
38 | + } | |
28 | 39 | |
29 | 40 | ///Find the difference of the given set of samples and the template |
30 | 41 | ///using cuda acceleration. |
... | ... | @@ -40,8 +51,9 @@ |
40 | 51 | int idx = y*16+x; |
41 | 52 | |
42 | 53 | float valIn = tex2D<unsigned char>(texIn, x, y); |
43 | - | |
44 | - print[idx] = abs(valIn); ///temporary | |
54 | + float templa = templ(x); | |
55 | + //print[idx] = abs(valIn); ///temporary | |
56 | + print[idx] = abs(templa); ///temporary | |
45 | 57 | |
46 | 58 | } |
47 | 59 | |
... | ... | @@ -52,7 +64,6 @@ |
52 | 64 | ///@param GLenum texType --either GL_TEXTURE_1D, GL_TEXTURE_2D or GL_TEXTURE_3D |
53 | 65 | /// may work with other gl texture types, but untested. |
54 | 66 | ///@param DIM_Y, the number of samples in the template. |
55 | - extern "C" | |
56 | 67 | void test(GLint texbufferID, GLenum texType) |
57 | 68 | { |
58 | 69 | |
... | ... | @@ -81,7 +92,7 @@ |
81 | 92 | cudaDeviceSynchronize(); |
82 | 93 | stringstream name; //for debugging |
83 | 94 | name << "FromTex.bmp"; |
84 | - stim::gpu2image<float>(print, name.str(),16,1089*8,0,255); | |
95 | + stim::gpu2image<float>(print, name.str(),16,1089*8,0,1.0); | |
85 | 96 | |
86 | 97 | tx.UnmapCudaTexture(); |
87 | 98 | cleanUP(); | ... | ... |
stim/gl/gl_spider.h
... | ... | @@ -21,6 +21,7 @@ |
21 | 21 | #include <stim/visualization/glObj.h> |
22 | 22 | #include <vector> |
23 | 23 | #include <stim/cuda/branch_detection.cuh> |
24 | +#include "../../../volume-spider/fiber.h" | |
24 | 25 | //#include <stim/cuda/testKernel.cuh> |
25 | 26 | |
26 | 27 | //#include <stim/cuda/testKernel.cuh> |
... | ... | @@ -157,16 +158,13 @@ class gl_spider : public virtual gl_texture<T> |
157 | 158 | { |
158 | 159 | setMatrix(); |
159 | 160 | glCallList(dList+3); |
160 | - std::cerr << 1 << std::endl; | |
161 | 161 | std::vector< stim::vec<float> > result = find_branch( |
162 | 162 | btexbufferID, GL_TEXTURE_2D, 16, 216); |
163 | 163 | stim::vec<float> size(S[0]*R[0], S[1]*R[1], S[2]*R[2]); |
164 | - std::cerr << 2 << std::endl; | |
165 | 164 | if(!result.empty()) |
166 | 165 | { |
167 | 166 | for(int i = 1; i < result.size(); i++) |
168 | 167 | { |
169 | - std::cerr << 2 << " " << i << std::endl; | |
170 | 168 | stim::vec<float> cylp( |
171 | 169 | 0.5 * cos(2*M_PI*(result[i][1])), |
172 | 170 | 0.5 * sin(2*M_PI*(result[i][1])), |
... | ... | @@ -183,12 +181,12 @@ class gl_spider : public virtual gl_texture<T> |
183 | 181 | -p[2] + cylp[2]*S[2]*R[2]); |
184 | 182 | seeddir = seeddir.norm(); |
185 | 183 | float seedm = m[0]/2.0; |
186 | -/* Uncomment for global run | |
187 | - stim::vec<float> lSeed = getLastSeed(); | |
184 | +// Uncomment for global run | |
185 | +/* stim::vec<float> lSeed = getLastSeed(); | |
188 | 186 | if(sqrt(pow((lSeed[0] - vec[0]),2) |
189 | 187 | + pow((lSeed[1] - vec[1]),2) + |
190 | 188 | pow((lSeed[2] - vec[2]),2)) > m[0]/4.0 |
191 | - && */ | |
189 | + && */ | |
192 | 190 | if( |
193 | 191 | !(vec[0] > size[0] || vec[1] > size[1] |
194 | 192 | || vec[2] > size[2] || vec[0] < 0 |
... | ... | @@ -196,9 +194,8 @@ class gl_spider : public virtual gl_texture<T> |
196 | 194 | { |
197 | 195 | setSeed(vec); |
198 | 196 | setSeedVec(seeddir); |
199 | - // setSeedMag(seedm); | |
197 | + setSeedMag(seedm); | |
200 | 198 | } |
201 | - std::cerr << 2 << " " << i << " end" << std::endl; | |
202 | 199 | } |
203 | 200 | } |
204 | 201 | |
... | ... | @@ -1001,7 +998,7 @@ class gl_spider : public virtual gl_texture<T> |
1001 | 998 | start = std::clock(); |
1002 | 999 | #endif |
1003 | 1000 | findOptimalDirection(); |
1004 | - test(texbufferID, GL_TEXTURE_2D); | |
1001 | + //test(texbufferID, GL_TEXTURE_2D); | |
1005 | 1002 | findOptimalPosition(); |
1006 | 1003 | findOptimalScale(); |
1007 | 1004 | Unbind(); |
... | ... | @@ -1024,6 +1021,7 @@ class gl_spider : public virtual gl_texture<T> |
1024 | 1021 | start = std::clock(); |
1025 | 1022 | #endif |
1026 | 1023 | findOptimalDirection(); |
1024 | + //test(texbufferID, GL_TEXTURE_2D); | |
1027 | 1025 | findOptimalPosition(); |
1028 | 1026 | findOptimalScale(); |
1029 | 1027 | Unbind(); |
... | ... | @@ -1144,7 +1142,7 @@ class gl_spider : public virtual gl_texture<T> |
1144 | 1142 | { |
1145 | 1143 | stim::vec<float> pos; |
1146 | 1144 | stim::vec<float> mag; |
1147 | - bool h; | |
1145 | + int h; | |
1148 | 1146 | bool started = false; |
1149 | 1147 | bool running = true; |
1150 | 1148 | stim::vec<float> size(S[0]*R[0], S[1]*R[1], S[2]*R[2]); |
... | ... | @@ -1184,11 +1182,13 @@ class gl_spider : public virtual gl_texture<T> |
1184 | 1182 | { |
1185 | 1183 | h = selectObject(pos, getDirection(), m[0]); |
1186 | 1184 | //Have we hit something previously traced? |
1187 | - if(h){ | |
1188 | - running = false; | |
1189 | - break; | |
1185 | + if(h != -1){ | |
1186 | + std::cout << "I hit a line" << h << std::endl; | |
1187 | + running = false; | |
1188 | + break; | |
1190 | 1189 | } |
1191 | 1190 | else { |
1191 | + cL.push_back(stim::vec<float>(p[0], p[1],p[2])); | |
1192 | 1192 | sk.TexCoord(m[0]); |
1193 | 1193 | sk.Vertex(p[0], p[1], p[2]); |
1194 | 1194 | Bind(btexbufferID, bfboId, 27); |
... | ... | @@ -1204,7 +1204,7 @@ class gl_spider : public virtual gl_texture<T> |
1204 | 1204 | } |
1205 | 1205 | |
1206 | 1206 | |
1207 | - bool | |
1207 | + int | |
1208 | 1208 | selectObject(stim::vec<float> loc, stim::vec<float> dir, float mag) |
1209 | 1209 | { |
1210 | 1210 | //Define the varibles and turn on Selection Mode |
... | ... | @@ -1257,36 +1257,133 @@ class gl_spider : public virtual gl_texture<T> |
1257 | 1257 | |
1258 | 1258 | // glEnable(GL_CULL_FACE); |
1259 | 1259 | hits = glRenderMode(GL_RENDER); |
1260 | - bool found_hits = processHits(hits, selectBuf); | |
1260 | + int found_hits = processHits(hits, selectBuf); | |
1261 | 1261 | return found_hits; |
1262 | 1262 | } |
1263 | 1263 | |
1264 | 1264 | //Given a size of the array (hits) and the memory holding it (buffer) |
1265 | 1265 | //returns whether a hit tool place or not. |
1266 | - bool | |
1266 | + int | |
1267 | 1267 | processHits(GLint hits, GLuint buffer[]) |
1268 | 1268 | { |
1269 | 1269 | GLuint names, *ptr; |
1270 | 1270 | //printf("hits = %u\n", hits); |
1271 | 1271 | ptr = (GLuint *) buffer; |
1272 | - for (int i = 0; i < hits; i++) { /* for each hit */ | |
1273 | - names = *ptr; | |
1274 | - // printf (" number of names for hit = %u\n", names); | |
1275 | - ptr++; | |
1276 | - ptr++; //Skip the minimum depth value. | |
1277 | - ptr++; //Skip the maximum depth value. | |
1278 | - // printf (" the name is "); | |
1279 | - // for (int j = 0; j < names; j++) { /* for each name */ | |
1280 | - // printf ("%u ", *ptr); ptr++; | |
1281 | - // } | |
1282 | - // printf ("\n"); | |
1283 | - } | |
1272 | + // for (int i = 0; i < hits; i++) { /* for each hit */ | |
1273 | + names = *ptr; | |
1274 | + // printf (" number of names for hit = %u\n", names); | |
1275 | + ptr++; | |
1276 | + ptr++; //Skip the minimum depth value. | |
1277 | + ptr++; //Skip the maximum depth value. | |
1278 | + // printf (" the name is "); | |
1279 | + // for (int j = 0; j < names; j++) { /* for each name */ | |
1280 | + // printf ("%u ", *ptr); ptr++; | |
1281 | + // } | |
1282 | + // printf ("\n"); | |
1283 | + // } | |
1284 | + | |
1285 | + | |
1284 | 1286 | if(hits == 0) |
1285 | - return 0; | |
1287 | + { | |
1288 | + return -1; | |
1289 | + } | |
1286 | 1290 | else |
1287 | - return 1; | |
1291 | + { | |
1292 | + printf ("%u ", *ptr); | |
1293 | + return *ptr; | |
1294 | + } | |
1295 | + } | |
1296 | + | |
1297 | + void | |
1298 | + clearCurrent() | |
1299 | + { | |
1300 | + cL.clear(); | |
1301 | + } | |
1302 | + | |
1303 | + std::pair<stim::fiber<float>, int > | |
1304 | + traceLine(stim::vec<float> pos, stim::vec<float> mag, int min_cost) | |
1305 | + { | |
1306 | + Bind(); | |
1307 | + sk.Begin(stim::OBJ_LINE); | |
1308 | + sk.createFromSelf(GL_SELECT); | |
1309 | + std::vector<stim::vec<float> > cM; | |
1310 | + cL.push_back(pos); | |
1311 | + cM.push_back(mag); | |
1312 | + | |
1313 | +// setPosition(pos); | |
1314 | +// setMagnitude(mag); | |
1315 | + int h; | |
1316 | + bool started = false; | |
1317 | + bool running = true; | |
1318 | + stim::vec<float> size(S[0]*R[0], S[1]*R[1], S[2]*R[2]); | |
1319 | + while(running) | |
1320 | + { | |
1321 | + int cost = Step(); | |
1322 | + if (cost > min_cost){ | |
1323 | + running = false; | |
1324 | + sk.End(); | |
1325 | + return pair<stim::fiber<float>, int>(stim::fiber<float> (cL, cM), -1); | |
1326 | + break; | |
1327 | + } else { | |
1328 | + //Have we found the edge of the map? | |
1329 | + pos = getPosition(); | |
1330 | + if(pos[0] > size[0] || pos[1] > size[1] | |
1331 | + || pos[2] > size[2] || pos[0] < 0 | |
1332 | + || pos[1] < 0 || pos[2] < 0) | |
1333 | + { | |
1334 | +// std::cout << "Found Edge" << std::endl; | |
1335 | + running = false; | |
1336 | + sk.End(); | |
1337 | + return pair<stim::fiber<float>, int>(stim::fiber<float> (cL, cM), -1); | |
1338 | + break; | |
1339 | + } | |
1340 | + //If this is the first step in the trace, | |
1341 | + // save the direction | |
1342 | + //(to be used later to trace the fiber in the opposite direction) | |
1343 | + if(started == false){ | |
1344 | + rev = -getDirection(); | |
1345 | + started = true; | |
1346 | + } | |
1347 | +// std::cout << i << p << std::endl; | |
1348 | + //Has the template size gotten unreasonable? | |
1349 | + mag = getMagnitude(); | |
1350 | + if(mag[0] > 75 || mag[0] < 1){ | |
1351 | +// std::cout << "Magnitude Limit" << std::endl; | |
1352 | + running = false; | |
1353 | + sk.End(); | |
1354 | + return pair<stim::fiber<float>, int>(stim::fiber<float> (cL, cM), -1); | |
1355 | + break; | |
1356 | + } | |
1357 | + else | |
1358 | + { | |
1359 | + h = selectObject(p, getDirection(), m[0]); | |
1360 | + //Have we hit something previously traced? | |
1361 | + if(h != -1){ | |
1362 | + std::cout << "I hit a line" << h << std::endl; | |
1363 | + running = false; | |
1364 | + sk.End(); | |
1365 | + return pair<stim::fiber<float>, int>(stim::fiber<float> (cL, cM), h); | |
1366 | + break; | |
1367 | + } | |
1368 | + else { | |
1369 | + cL.push_back(stim::vec<float>(p[0], p[1],p[2])); | |
1370 | + cM.push_back(m[0]); | |
1371 | + sk.TexCoord(m[0]); | |
1372 | + sk.Vertex(p[0], p[1], p[2]); | |
1373 | + Bind(btexbufferID, bfboId, 27); | |
1374 | + CHECK_OPENGL_ERROR | |
1375 | + branchDetection(); | |
1376 | + CHECK_OPENGL_ERROR | |
1377 | + Unbind(); | |
1378 | + CHECK_OPENGL_ERROR | |
1379 | + | |
1380 | + } | |
1381 | + } | |
1382 | + } | |
1383 | + } | |
1288 | 1384 | } |
1289 | 1385 | |
1386 | + | |
1290 | 1387 | |
1291 | 1388 | }; |
1292 | 1389 | } | ... | ... |
stim/image/image.h
... | ... | @@ -31,8 +31,12 @@ public: |
31 | 31 | } |
32 | 32 | |
33 | 33 | /// Constructor initializes an image to a given size |
34 | - image(unsigned int x, unsigned int y = 1, unsigned int z = 1){ | |
34 | + /*image(unsigned int x, unsigned int y = 1, unsigned int z = 1){ | |
35 | 35 | img = cimg_library::CImg<T>(x, y, z); |
36 | + }*/ | |
37 | + | |
38 | + image(unsigned int x, unsigned int y = 1, unsigned int z = 1, unsigned int c = 1){ | |
39 | + img = cimg_library::CImg<T>(x, y, z, c); | |
36 | 40 | } |
37 | 41 | |
38 | 42 | //Load an image from a file |
... | ... | @@ -90,6 +94,23 @@ public: |
90 | 94 | |
91 | 95 | } |
92 | 96 | |
97 | + /// Copy the given data to the specified channel | |
98 | + | |
99 | + /// @param c is the channel number that the data will be copied to | |
100 | + /// @param buffer is a pointer to the image to be copied to channel c | |
101 | + | |
102 | + void set_channel(unsigned int c, T* buffer){ | |
103 | + | |
104 | + //calculate the number of pixels in a channel | |
105 | + unsigned int channel_size = width() * height(); | |
106 | + | |
107 | + //retreive a pointer to the raw image data | |
108 | + T* ptr = img.data() + channel_size * c; | |
109 | + | |
110 | + //copy the buffer to the specified channel | |
111 | + memcpy(ptr, buffer, sizeof(T) * channel_size); | |
112 | + } | |
113 | + | |
93 | 114 | image<T> getslice(unsigned int c){ |
94 | 115 | |
95 | 116 | //create a new image |
... | ... | @@ -228,6 +249,18 @@ public: |
228 | 249 | } |
229 | 250 | |
230 | 251 | |
252 | + image<T> rotate(float angle, float cx, float cy){ | |
253 | + | |
254 | + image<T> result; | |
255 | + float zoom = 1; | |
256 | + unsigned int interpolation = 1; | |
257 | + unsigned int boundary = 1; | |
258 | + result.img = img.get_rotate (angle, cx, cy, zoom, interpolation, boundary); | |
259 | + //result.save("data_output/test_rotate_neum.bmp"); | |
260 | + | |
261 | + return result; | |
262 | + } | |
263 | + | |
231 | 264 | }; |
232 | 265 | |
233 | 266 | }; //end namespace stim | ... | ... |
stim/image/image_contour_detection.h
1 | -//#include <stim/image/image.h> | |
2 | -//#include <cmath> | |
3 | -//#include <stim/visualization/colormap.h> | |
4 | 1 | |
5 | -stim::image<float> gaussian_derivative_filter_odd(stim::image<float> image, float sigma, unsigned int sigma_n, unsigned int winsize, float theta, unsigned int w, unsigned int h); | |
6 | -stim::image<float> func_mPb_theta(stim::image<float> lab, float theta, unsigned int w, unsigned int h); | |
7 | -stim::image<float> func_mPb(stim::image<float> lab, unsigned int theta_n, unsigned int w, unsigned int h); | |
8 | 2 | \ No newline at end of file |
3 | +//stim::image<float> gaussian_derivative_filter_odd(stim::image<float> image, int r, unsigned int sigma_n, float theta); | |
4 | +//stim::image<float> func_mPb_theta(stim::image<float> img, float theta, int* r, float* alpha, int s); | |
5 | +//stim::image<float> func_mPb(stim::image<float> img, unsigned int theta_n, int* r, float* alpha, int s); | |
6 | + | |
7 | +stim::image<float> Gd1(stim::image<float> image, int r, unsigned int sigma_n); | |
8 | +stim::image<float> Gd2(stim::image<float> image, int r, unsigned int sigma_n); | |
9 | +stim::image<float> Gd_odd(stim::image<float> image, int r, unsigned int sigma_n, float theta); | |
10 | +stim::image<float> Gd_even(stim::image<float> image, int r, unsigned int sigma_n, float theta); | |
11 | +stim::image<float> Gd_center(stim::image<float> image, int r, unsigned int sigma_n); | |
12 | + | |
13 | +stim::image<float> textons(stim::image<float> image, unsigned int theta_n); | |
14 | +stim::image<float> kmeans(stim::image<float> textons, unsigned int K); | |
15 | +stim::image<float> Pb(stim::image<float> image, int r, unsigned int sigma_n); | |
16 | +stim::image<float> cPb(stim::image<float> img, int* r, float* alpha, int s); | |
17 | +stim::image<float> tPb(stim::image<float> img, int* r, float* alpha, unsigned int theta_n, unsigned int bin_n, int s, unsigned int K); | |
9 | 18 | \ No newline at end of file | ... | ... |